Антигенная структура вирусов. Антигены вирусов и бактерий

Антигены вирусов это антигены, входящие в состав вирусов или возникающие при их размножении. Вирусы являются сильными носителями антигенности, в этой роли чаще всего выступают белки или их комплексы с другими соединениями.

Успехи в изучении вирусных антигенов - важная предпосылка изготовления вирусных вакцин или иммунных сывороток. Из многочисленных групп вирусов важное медицинское значение имеют аденовирусы, вирусы герпеса, вирусы оспы, вирусы полиомиелита, арбовирусы, вирусы гриппа. Последние имеют большую антигенную изменчивость, поэтому вакцину против всех вирусных разновидностей создать невозможно, поэтому приходится применять иммуностимуляторы, например – цитовир детский инструкция по применению которого доступна в Интернете.

Вирусспецифические антигены

Антигены вирусных частиц (V-Ar, от - virus) структурная составная часть вириона.

Растворимые антигены (S-Ar, от - soluble) - меньшие по размерам, чем вирион; обнаруживаются в надосадочной жидкости при дифференциальном центрифугировании. К ним относятся:

  • антигенные структуры, как связанные с вирионом, так и свободные, напр., синтезированные в избытке структурные белки;
  • антигенные структуры, которые появляются только в растворимой форме - вирусспецифические ферментные белки.

Клеточноспецифические антигены вириона

Формируются во время созревания и отшнуровывания вируса из ядра и клеточной мембраны (оболочки миксовирусов и вирусов герпеса).

Антигенность вируса во взаимодействии с факторами макроорганизма определяет наступление, течение и исход соответствующих инфекционных заболеваний. Образованные инфицированным макроорганизмом антитела против вируса могут быть обнаружены с помощью серологических методов (серология). Выявление вируса (не электронно-оптически и не по биологическому действию) также во многих случаях основывается на идентификации антигенов (например, методами иммунофлуоресценции, преципитации, радиоиммунологическим методом). Кроме того, вирусные антигены являются ценным вспомогательным маркером для изучения взаимодействия вируса и клетки, т. к. они кодируются вирусным геномом и синтезируются клеткой хозяина.

Статью подготовил и отредактировал: врач-хирург

Видео:

Полезно:

Статьи по теме:

  1. Ведущий автор исследования Мэтью Тэйлор из лаборатории Линн Энквист и Генри Хильман, профессор молекулярной биологии...
  2. Факторами риска эпителиальной дисплазии шейки матки есть раннее начало половой жизни, частая смена своих половых...
  3. Всемирной организацией здравоохранения вирусы, вызывающие рак, были разделены на три группы: мелкие ДНК-содержащие вирусы (вирусы...

Химический состав вируса.

Морфология.

Геном.

Таксономия.

Историческая справка.

Вирус краснухи.

Вирус бешенства.

Вирус клещевого энцефалита.

Клещевой энцефалит (синонимы: таежный энцефалит , дальневосточный менингоэнцефалит, клещевой энцефаломиелит, русский весенне-летний менингоэнцефалит , tick-borne encephalitis – рожденный клещом) – это острое вирусное заболевание, характеризующееся интоксикацией, поражением серого вещества головного и спинного мозга, приводящее к развитию вялых парезов и параличей.

Экспедиции 1937-44 гг. , руководимые Л.А. Зильбером , Е.Н. Павловским и И.О. Рогозиным (в составе экспедиций также работали видные советские вирусологи – М.П. Чумаков, В.Д. Соловьев, Е.Н. Левкович) выделили КЭ в отдельную нозологическую форму, выявили штаммы вирусов-возбудителей клещевого энцефалита, установили роль иксодовых клещей как переносчиков, изучили эпидемиологию и патогенез КЭ, разработали методы специфической профилактики и лечения болезни.

Семейство Flaviviridae (от лат. flava – желтый, название получили от желтой лихорадки, возбудитель которой является типичным представителем этой группы)

Род Flavivirus (включает 67 представителей)

Тип – различают два основных типа вируса клещевого энцефалита: западный=европейский=лесной (переносчики - клещи Ixodes ricinus ) и дальневосточный=азиатский=таежный (переносчики - клещи Ixodes persulcatus ), которые отличаются по антигенному составу и тяжести клинического течения, вызываемых ими форм КЭ. В Греции из клещей Rhipicephalus bursa был выделен третий тип вируса КЭ.

Геном вируса КЭ представлен одноцепочечной линейной (+) РНК.

Тип симметрии нуклеокапсида – кубический .

Форма вирусов сферическая .

Размер 40-50 нм .

Организация сложная , состоит из:

· РНК , покрытой капсидом , представленным белком С ;

· белка М , связывающего нуклеокапсид с суперкапсидом;

· внешней оболочки (суперкапсида ), на поверхности которого расположены шипики (гликопротеин Е) – гемагглютинины .

РНК – 5,5%, белки – 60%, липиды – 30%, углеводы – 6,5%

1. Групповой АГ – комплементсвязывающий, связан с белками нуклеокапсида (выявляется в РСК);

2. Типовой АГ – гемагглютинины суперкапсида (выявляется в РН, РТГА с птичьими эритроцитами – уток, гусей, петухов, цыплят).

Особенности репродукция вируса .

1. Адсорбция на фосфолипидных и гликопротеидных рецепторах клеток.

2. Проникновение в клетку путем рецепторного эндоцитоза (виропексиса) с образованием фагосомы.

3. Слияние вирусной оболочки со стенкой вакуоли, при этом вирусная РНК выходит в цитоплазму.

4. Эклипс-фаза – репликация РНК и синтез вирусных белков в цитоплазме клетки (идёт медленно ≈40-60 часов).



5. Сборка нуклеокапсида на ЭПС клетки, вирусы находятся в вакуолях (образуют кристаллоподобные вкючения).

6. Выход из клетки путем почкования, присоединение суперкапсида при выходе из клетки (клетка длительное время остается жизнеспособной).


Существуют следующие разновидности бактериальных антигенов: группоспецифические (встречаются у разных видов одного рода или семейства); видоспецифические (встречаются у различных представителей одного вида); типоспецифические (определяют серологические варианты – серовары).

В зависимости от локализации в бактериальной клетке различают:

1) жгутиковые Н-АГ, локализуются в жгутиках у бактерий, основа его белок флагеллин, термолабилен;

2) соматический О-АГ связан с клеточной стенкой бактерий. Его основу составляют ЛПС, по нему различают сероварианты бактерий одного вида. Он термостабилен, не разрушается при длительном кипячении, химически устойчив (выдерживает обработку формалином и этанолом);

3) капсульные К-АГ располагаются на поверхности клеточной стенки. По чувствительности к нагреванию различают 3 типа К-АГ: А, В, L. Наибольшая термостабильность характерна для типа А, тип В выдерживает нагревание до 60 0 С в течение 1 часа, тип L быстро разрушается при этой температуре. На поверхности возбудителя брюшного тифа и др.энтеробактерий, которые обладают высокой вирулентностью можно обнаружить особый вариант капсульного АГ –Vi-антиген;

4) антигенными свойствами обладают также бактериальные белковые токсины, ферменты и некоторые др. белки.

Антигены вирусов:

1) суперкапсидные АГ – поверхностные оболочечные;

2) белковые и гликопротеидные АГ;

3) капсидные – оболочечные;

4) нуклеопротеидные (сердцевидные) АГ.

9.5. Антитела и антителообразование: первичный и вторичный ответ. Оценка иммунного статуса: основные показатели и методы их определения».

Антитела – это гамма-глобулины, вырабатываемые в ответ на введение антигена, способные специфически связываться с антигеном и участвовать во многих иммунологических реакциях. Они состоят из полипептидных цепей: двух тяжелых (Н) цепей и двух легких (L). Тяжелые и легкие цепи связаны между собой попарно дисульфидными связями. Между тяжелыми цепями также есть дисульфидная связь, так называемый «шарнирный» участок, который ответствен за взаимодействие с первым компонентом комплемента С1 и активацию его по классическому пути. Легкие цепи бывают 2типов (каппа и лямбда), а тяжелые – 5типов (альфа, гамма, мю, эпсилон и дельта). Вторичная структура полипептидных цепей молекулы Ig обладает доменным строением. Это означает, что отдельные участки цепи свернуты в глобулы (домены). Выделяют С-домены- с постоянной структурой полипептидной цепи и V-домены (вариабельные с переменной структурой). Вариабельные домены легкой и тяжелой цепи совместно образуют участок, который специфически связывается с антигеном. Это антигенсвязывающий центр молекулы Ig, или паротоп. При ферментативном гидролизе Ig образуется три фрагмента. Два из них способны специфически связываться с антигеном и получили название Fab-фрагменты, связывающиеся с антигеном. Третий фрагмент, способный образовывать кристаллы, получил название Fc. Он ответствен за связывание с рецепторами на мембране клеток макроорганизма. В структуре молекул Ig обнаруживают дополнительные полипептидные цепи. Так, полимерные молекулы IgМ и IgА содержат J- пептид, который обеспечивает превращение полимерного Ig в секреторную форму. Молекулы секреторных Ig в отличие от сывороточных, обладают особым S- пептидом, называемым секреторным компонентом. Он обеспечивает перенос молекулы Ig через эпителиальную клетку в просвет органа и предохраняет ее в секрете слизистых от ферментативного расщепления. Рецепторный Ig, который локализуется на цитоплазматической мембране В-лимфоцитов, имеет дополнительный гидрофобный трансмембранный М-пептид.

Существует 5 классов иммуноглобулинов у человека:

1) иммуноглобулин класса G – это мономер, включающий в себя 4 субкласса (IgG1, IgG2, IgG3, IgG4), которые отличаются друг от друга по аминокислотному составу и антигенным свойствам, имеет 2 антигенсвязывающих центра. На долю его приходится 70-80% всех сывороточных Ig. Период полураспада 21 день. К основным свойствам IgG относятся: играют основополагающую роль в гуморальном иммунитете при инфекционных заболеваниях; проникает через плаценту и формирует антиинфекционный иммунитет у новорожденных; способны нейтрализовать бактериальные экзотоксины, связывать комплемент, участвовать в реакции преципитации. Хорошо определяется в сыворотке крови на пике первичного и при вторичном иммунном ответе. IgG4 участвует в развитии аллергической реакции 1 типа.

2) иммуноглобулин класса М – пентамер, который имеет 10 антигенсвязывающих центров. Период полураспада 5 дней. На его долю приходится около 5-10% всех сывороточных Ig. Образуется в начале первичного иммунного ответа, также первым начинает синтезироваться в организме новорожденного – определяется уже на 20-й неделе внутриутробного развития. Свойства: не проникает через плаценту; появляется у плода и участвует в антиинфекционной защите; способны агглютинировать бактерии, нейтрализовать вирусы, активировать комплемент; играют важную роль в элиминации возбудителя из кровеносного русла, активации фагоцитоза; образуются на ранних сроках инфекционного процесса; отличаются высокой активностью в реакциях агглютинации, лизиса и связывания эндотоксинов грамотрицательных бактерий.

3) иммуноглобулин класса А – существует в сывороточной и секреторной формах. На долю сывороточного Ig приходится 10-15%, мономер, имеет 2 антигенсвязывающих центра, период полураспада 6 дней. Секреторный Ig существует в полимерной форме. Содержатся в молоке, молозиве, слюне, слезном, бронхиальном, желудочно-кишечном секрете, желчи, моче; участвуют в местном иммунитете, препятствуют прикреплению бактерий к слизистой, нейтрализуют энтеротоксин, активируют фагоцитоз и комплемент.

4) иммуноглобулин класса Е- мономеры, на долю которых приходится 0,002%. К этому классу относится основная масса аллергических антител – реагинов. Уровень IgЕ значительно повышается у людей, страдающих аллергией и зараженных гельминтами.

5) иммуноглобулин класса Д – это мономер, на долю которого приходится 0,2%. Плазматические клетки, секретирующие IgД локализуются преимущественно в миндалинах и аденоидной ткани. Участвует в развитии местного иммунитета, обладает антивирусной активностью, в редких случаях активирует комплемент, участвует в дифференцеровке В-клеток, способствуют развитию антиидиотипического ответа, участвует в аутоиммунных процессах.

Способность синтезировать АТ макроорганизм приобретает довольно рано. Уже на 13 неделе эмбрионального периода развития возникают В-лимфоциты, синтезирующие IgМ, а на 20 неделе этот Ig можно определить в сыворотке крови. Концентрация антител достигает максимума к периоду полового созревания и сохраняется на высоких цифрах в течение всего репродуктивного периода. В старческом возрасте содержание антител снижается. Повышение количества Ig наблюдается при инфекционных заболеваниях, аутоиммунных расстройствах, снижение его отмечено при некоторых опухолях и иммунодефицитных состояниях. Антителопродукция в ответ на антигенный стимул имеет характерную динамику. Выделяют латентную, логарифмическую, стационарную фазы и фазу снижения. В латентную фазу антителопродукция практически не изменяется и остается на базальном уровне. Во время логарифмической фазы наблюдается интенсивный прирост количества антиген-специфичных В-лимфоцитов и происходит нарастание титра АТ. В стационарной фазе количество специфических антител и синтезирующих их клеток достигает максимума и стабилизируется. В фазе снижения наблюдается постепенное уменьшение титров антител. При первичном контакте с антигеном развивается первичный иммунный ответ. Для него характерны длительная латентная (3-5 суток) и логарифмическая (7-15 суток) фазы. Первые диагностически значимые титры антител регистрируются на 10-14-е сутки от момента иммунизации. Стационарная фаза продолжается 15-30 суток, а фаза снижения – 1-6 месяцев. В итоге первичного иммунного реагирования формируются многочисленные клоны антигенспецифичных В-лимфоцитов: антителопродуцирующих клеток и В-лимфоцитов иммунологической памяти, а во внутренней среде макроорганизма в высоком титре накапливаются IgG и/или IgА (а также IgЕ). Со временем антительный ответ угасает. Повторный контакт иммунной системы с тем же антигеном ведет к формированию вторичного иммунного ответа . Для вторичного ответа характерна укороченная латентная фаза (от нескольких часов до 1-2 суток). Логарифмическая фаза отличается более интенсивной динамикой прироста и более высокими титрами специфических антител. При вторичном иммунном ответе организм сразу же, в подавляющем большинстве синтезирует IgG. Характерная динамика антителопродукции обусловлена подготовленностью иммунной системы к повторной встрече с антигеном за счет формирования иммунологической памяти.

Явление интенсивного антителообразования при повторном контакте с антигеном широко используется в практических целях, например при вакцинопрофилактике. Для создания и поддержания иммунитета на высоком защитном уровне схемы вакцинации предусматривают первичное введение антигена для формирования иммунологической памяти и последующие ревакцинации через различные интервалы времени.

Этот же феномен используют при получении высокоактивных лечебных и диагностических иммунных сывороток (гипериммунных). Для этого животным или донорам производят многократные введения препаратов антигена по специальной схеме.

Иммунный статус – это структурное и функциональное состояние иммунной системы индивидуума, определяемое комплексом клинических и лабораторных иммунологических показателей.

На иммунный статус оказывают влияние следующие факторы: 1) климато-географические (температура, влажность, солнечная радиация, длина светового дня); 2) социальные (питание, жилищно-бытовые условия, профессиональные вредности); 3) экологические (загрязнение окружающей среды радиоактивными веществами, применение пестицидов в сельском хозяйстве); 4) влияние диагностических и лечебных манипуляций, лекарственная терапия; 5) стресс.

Иммунный статус можно определить путем постановки комплекса лабораторных тестов, включающих оценку состояния факторов неспецифической резистентности, гуморального (В) и клеточного (Т) иммунитета. Оценка иммунного статуса проводится в клинике при трансплантации органов и тканей, аутоиммунных заболеваниях, аллергиях, для контроля эффективности лечения болезней, связанных с нарушением иммунной системы. Оценка иммунного статуса чаще всего базируется на определении следующих показателей:

1) общего клинического обследования (жалобы больного, профессия, осмотр);

2) состояния факторов естественной резистентности (определяют фагоцитоз, комплемент, интерфероновый статус, колонизационную резистентность);

3) гуморального иммунитета (определение иммуноглобулинов класса G, М, А, Д, Е в сыворотке крови);

4) клеточного иммунитета (оценивается по количеству Т-лимфоцитов – реакция розеткообразования, определение соотношения хелперов и супрессоров Т4 и Т8 лимфоцитов, которое в норме составляет примерно 2);

5) дополнительных тестов (определение бактерицидности сыворотки крови, титрование С3, С4 компонентов комплемента, определение содержания С-реактивного белка в сыворотке крови, определение ревматоидных факторов.

Для характеристики микроорганизмов выделяют родовую, видовую, групповую и типовую специфичность антигенов. Наиболее точная дифференциация осуществляется с использованием моноклональных антител (МКА), распознающих только одну антигенную детерминанту.

Обладая сложным химическим строением, бактериальная клетка представляет целый комплекс антигенов. Антигенными свойствами обладают жгутики, капсула, клеточная стенка, цитоплазматическая мембрана, рибосомы и другие компоненты цитоплазмы, токсины, ферменты. Основными видами бактериальных антигенов являются:

Соматические или О- антигены (у грамотрицательных бактерий специфичность определяется дезоксисахарами полисахаридов ЛПС);

Жгутиковые или Н- антигены (белковые);

Поверхностные или капсульные К- антигены.

Выделяют протективные антигены, обеспечивающие защиту (протекцию) против соответствующих инфекций, что используется для создания вакцин.

Любой микроорганизм (бактерии, грибы, вирусы) представляет собой комплекс антигенов.

По специфичности микробные антигены делятся на:

· перекрестно-реагирующие (гетероантигены ) - это антигены общие с антигенами тканей и органов человека. Они имеются у многих микроорганизмов и рассматриваются как важный фактор вирулентности и пусковой механизм развития аутоиммунных процессов;

· группоспецифические - общие у микроорганизмов одного рода или семейства;

· видоспецифические - общие у разных штаммов одного вида микроорганизмов;

· вариантспецифические (типоспецифические) - встречаются у отдельных штаммов внутри вида микроорганизмов. По наличию тех или иных вариантспецифических антигенов микроорганизмы внутри вида делят на варианты по антигенному строению - серовары.

По локализации антигены бактерий делятся на:

· целлюлярные (связанные с клеткой),

· экстрацеллюлярные (не связанные с клеткой).

Среди целлюлярных антигенов основными являются: соматический - О-антиген (глюцидо-липоидо-полипепдидный комплекс), жгутиковый - Н-антиген (белок), поверхностные - капсульные - К-антиген, Vi-антиген. Экстрацеллюлярные антигены - это продукты, секретируемые бактериями во внешнюю среду, в том числе антигены экзотоксинов, ферментов агрессии и защиты, и другие.

Антигены вирусов

В структуре вирусной частицы различают несколько групп антигенов:

· ядерные (или ко ровые)

· капсидные (или оболочечные)

· суперкапсидные.

На поверхности некоторых вирусных частиц встречаются особые V-антигены- гемагглютинин и фермент нейраминидаза.



Антигены вирусов различаются по происхождению. Часть из них – вирусоспецифические . Информация об их строении картирована в нуклеиновой кислоте вируса. Другие антигены вирусов являются компонентами клетки хозяина (углеводы, липиды), они захватываются во внешнюю оболочку вируса при его рождении путем почкования.

Антигенный состав вириона зависит от строения самой вирусной частицы. Антигенная специфичность простоорганизованных вирусов связана с рибо- и дезоксирибонуклеопротеинами. Эти вещества хорошо растворяются в воде и поэтому обозначаются как S-антигены (от лат. Solution- раствор). У сложноорганизованных вирусов часть антигена связана с нуклеокапсидом, а другая – локализуется во внешней оболочке – суперкапсиде. Антигены многих вирусов отличаются высокой степенью изменчивости. Это связано с постоянным мутационным процессом, который претерпевает генетический аппарат вирусной частицы. Примером могут служить вирус гриппа, вирысы иммунодефицитов человека.

14. Антигены гистосовместимости. Н а цитоплазматических мембранах практически всех клеток макроорганизма обнаруживаются антигены гистосовместимости. Большая часть из них относится к системе главного комплекса гистосовместимости, или МНС (аббр. от англ. Major histocompatibility complex).



По химической природе антигены гистосовместимости представляют собой гликопротеиды, прочно связанные с цитоплазматической мембраной клеток. Их отдельные фрагменты имеют структурную гомологию с молекулами иммуноглобулинов и поэтому относятся к единому суперсемейству.

Различают два основных класса молекул МНС. Условно принято, что МНС I класса индуцирует преимущественно клеточный иммунный ответ, а МНС II класса – гуморальный.

МНС I класса состоит из двух нековалентно связанных полипептидных цепей с разной молекулярной массой: тяжелой альфа-цепи и легкой бета-цепи. Альфа-цепь имеет внеклеточный участок с доменным строением (альфа1,альфа2,альфа3-домены), трансмембранный и цитоплазматический.

Бета-цепь представляет собой бета-2-микроглобулин, который «налипает» на альфа3-домен после экспрессии альфа-цепи на цитоплазматической мембране клетки.

Для МНС I класса характерна высокая скорость биосинтеза – процесс завершается за 6 часов. Этот комплекс экспрессируется на поверхности практически всех клеток, кроме эритроцитов и клеток ворсинчатого трофобласта. Плотность МНС I класса достигает 7000 молекул на клетку, и они покрывают около 1% ее поверхности.

У человека МНС обозначили как HLA (аббр. от англ. Human Leukocyte Antigen), так как он ассоциирован с лейкоцитами.

В настоящее время у человека различают более 200 различных вариантов HLA I класса. Они кодируются генами, картированными в трех основных сублокусах 6-й хромосомы и наследуются и проявляются независимо: HLA-A, HLA-B, HLA-C. Локус А объединяет более 60 вариантов, В-130, а С- около 40.

Основная биологическая роль HLA I класса состоит в том, что они определяют биологическую индивидуальность («биологический паспорт») и являются маркерами «своего» для иммунокомпетентных клеток. Заражение клетки вирусом или мутация изменяют структуру HLA I класса.Содержащая чужеродные или модифицированные пептиды молекула МНС I класса имеет нетипичную для данного организма структуру и является сигналом для активации Т-киллеров (CD8 + - лимфоциты). Клетки, отличающиеся по I классу, уничтожаются как чужеродные.

В структуре и функции МНС II класса есть ряд принципиальных отличий. Во-первых , они имеют более сложное строение. Комплекс образован двумя нековалентно связанными полипептидными цепочками (альфа-цепь и бета-цепь), имеющими сходное доменное строение. Альфа-цепь имеет один глобулярный участок, а бета-цепь – два. Обе цепи как трансмембранные пептиды состоят из трех участков – внеклеточного, трансмембранного и цитоплазматического. Во-вторых , «щель Бьоркмана» в МНС II класса образована одновременно обеими цепочками. Она вмещает больший по размеру олигопептид (12-25 аминокислотных остатков), причем последний полностью «скрывается» внутри этой щели и в таком состоянии не обнаруживается специфическими антителами.В-третьих , МНС II класса включает в себя пептид, захваченный из внеклеточной среды путем эндоцитоза, а не синтезированный самой клеткой. В-четвертых , МНС II класса экспрессируется на поверхности ограниченного числа клеток: дендритных, В-лимфоцитах, Т-хелперах, активированных макрофагах, тучных, эпителиальных и эндотелиальных клетках. Обнаружение МНС II класса на нетипичных клетках расценивается в настоящее время как иммунопатология. Биосинтез МНС II класса протекает в эндоплазматическом ретикулуме, образующийся димерный комплекс затем встраивается в цитоплазматическую мембрану. До включения в него пептида комплекс стабилизируется шапероном (калнексином). МНС II класса экспрессируется на мембране клетки в течение часа после эндоцитоза антигена. У человека антиген гистосовместимости получил название HLA II класса. По имеющимся данным, человеческому организму свойственен чрезвычайно высокий полиморфизм HLA II класса, который в большей степени определяется особенностями строения бета-цепи. В состав комплекса входят продукты трех основных локусов: HLA DR, DQ, DP. При этом локус DR объединяет около 300 аллельных форм, DQ – около 400, а DP – около 500. Биологическая роль МНС II класса чрезвычайно велика. Фактически этот комплекс участвует в индукции приобретенного иммунного ответа. Фрагменты молекулы антигена экспрессируются на цитоплазматической мембране особой группы клеток, которая получила название антигенпрезентирующих клеток (АПК ). Это еще более узкий круг среди клеток, способных синтезировать МНС II класса. Наиболее активной АПК считается дендритная клетка, затем – В-лимфоцит и макрофаг. Структура МНС II класса с включенным в него пептидом в комплексе с ко-факторными молекулами CD-антигенов воспринимается и анализируется Т-хелперами (CD4+-лимфоциты). В случае принятия решения о чужеродности включенного в МНС II класса пептида Т-хелпер начинает синтез соответствующих иммуноцитокинов, и включается механизм специфического иммунного реагирования. В итоге активируется пролиферация и окончательная дифференцировка антигенспецифичных клонов лимфоцитов и формирование иммунной памяти. Помимо описанных выше антигенов гистосовместимости, идентифицирован III класс молекул МНС. Локус, содержащий кодирующие их гены, вклинивается между I и II классом и разделяет их. К МНС III класса относятся некоторые компоненты (С2, С4), белки теплового шока, факторы некроза опухоли и др.

Наиболее важными для изучения особенностей иммунного ответа являются антигены микроорганизмов — бактерий и вирусов.

В качестве антигенов у бактерий выступают белки, полисахариды, липополисахариды, липопротеиды, нуклеопротеиды и тому подобное. У микроорганизмов различают группоспецифические, видоспецифические и типоспецифические (вариантные) антигены. Первые встречаются у разных представителей одного рода или семьи; вторые — у разных представителей одного вида; третьи — у отдельных вариантов одного вида, в результате чего их разделяют на серовары (серологические варианты). Так, у Streptococcus pneumoniaе различают 80 сероваров.

Среди бактериальных антигенов выделяют Н, О, К и другие. Н-антигены — это жгутиковые антигены, которые получили название от Н-штаммов протея (от нем. Hauch — дыхание). Е. Вейль и А. Феликс наблюдали, что Н-штаммы дают на твердой питательной среде сплошной рост, а О-штаммы (от нем. Ohne hauch — без дыхания) растут в виде отдельных колоний.

Н-антиген представляет собой белок флагеллин. Он разрушается при нагревании (56-80°С), а после обработки фенолом сохраняет свои антигенные свойства.

О-антиген грамотрицательных бактерий связан с липополисахаридом клеточной стенки. Антигенной детерминантой ЛПС (липополисахарида) являются О-специфические боковые цепи, состав которых существенно различается не только у разных видов, но и в пределах одного вида у разных сероваров. В них содержатся гексозы (галактоза, глюкоза, рамноза т.п.) и N-ацетилглюкозамин.

Ранее этот антиген называли соматическим (расположенным в содержимом клетки, в соме), но это не совсем правильно, потому что О-специфические цепи немного выступают над поверхностью клетки. Полный соматический антиген в S-форме содержит полисахаридный гаптен. При переходе в R-форму соматический антиген теряет выраженную видовую специфичность, что связано с потерей специфического полисахарида.

Соматическими антигенами считают также липопротеиды. Как и ЛПС, они являются термостабильными антигенами, выдерживают нагревание до 80-100°С в течение 1-2 часов, не разрушаются после обработки формалином и спиртом.

При иммунизации животных живыми культурами, которые имеют жгутики, образуются антитела к О- и Н-антигенам, а при иммунизации кипяченой культурой — только к О-антигену.

К-антигены (капсульные) так же, как и О-антигены связаны с ЛПС клеточной стенки и капсулой, но зачастую содержат кислые полисахариды: глюкуроновую, галактуроновую и другие уроновые кислоты. По чувствительности к температуре К-антигены разделяют на А, В, М и L-антигены. Наиболее термостабильны А и М-антигены, которые могут выдерживать кипячение в течение 2 ч.

В-антигены выдерживают нагревание при температуре 60°С в течение часа, а L-антигены разрушаются при нагревании до 60°С. К-антигены часто маскируют О-антигены, поэтому для того, чтобы разрушить К-антигены, необходимо прокипятить культуру. Наиболее полно изучен капсульный Vi-антиген брюшнотифозной сальмонеллы и некоторых энтеробактерий. Из-за высокой вирулентность Vi-антиген назвали антигеном вирулентности.

Капсульные антигены обнаружены у Streptococcus pneumoniae (80 сероваров), Klebsiella pneumoniae (70 сероваров), в том числе возбудителей риносклеромы, у Bacillus anthracis (капсулы полипептидной природы). Антигены риккетсий, хламидий, микоплазм также связаны с поверхностными структурами клеток. Антигенными свойствами характеризуются также пили, фимбрии, мембраны, цитоплазма, ферменты, токсины.

У некоторых бактерий (Bacillus anthracis, Yersinia pestis, возбудителей коклюша, туляремии, бруцеллеза) найдены протективные антигены. Они характеризуются высокими защитными свойствами, вызывают синтез антител и могут использоваться для иммунизации.

У вирусов в роли антигенов могут выступать нуклеопротеиды (S-антигены, S — от лат. Solutio — растворимый), компоненты капсида, а также компоненты клеток хозяина (липиды, углеводы), адсорбированные на капсиде. Многие вирусы имеют в составе особый антиген — гемагглютинин, который способен склеивать эритроциты различных животных и человека. Реакция гемагглютинации под влиянием вирусных частиц состоит из двух стадий:

1) адсорбция вирусов на эритроцитах за счет взаимодействия с их гликопротеидными рецепторами;

2) слипание эритроцитов, на которых адсорбированы вирусы, можно наблюдать невооруженным глазом в виде «зонтиков» при постановке диагностической реакции гемагглютинации в плексиглазовых планшетах.

У вируса гриппа и других вирусов, которые продуцируют нейраминидазу, может происходить спонтанная диссоциация смеси вирусы-эритроциты, которая сопровождается освобождением вируса и в ряде случаев гемолизом эритроцитов. Это происходит за счет разрушения рецепторного мукоида эритроцита ферментом нейраминидазой.

Наличие вирусов в культуре можно обнаружить с помощью реакции гемадсорбции. Достаточно нанести эритроциты на поврежденную ткань или орган. Реакции гемагглютинации и гемадсорбции не являются иммунологическими, так как происходят без участия антител.

Но гемагглютинины вирусов способны вызывать образование специфических антител — антигемаглютининов и вступать с ними в реакцию торможения гемагглютинации (РТГА).

У вирусов также различают группоспецифические (в пределах рода или семьи) и типоспецифические (у разных штаммов в пределах одного вида) антигены. Эти различия учитываются при идентификации вирусов.

В связи с распространением аллергических заболеваний в последние годы интенсивно изучаются различные антигены (аллергены), которые могут вызвать неадекватный иммунный ответ с развитием воспалительной реакции (гиперчувствительность немедленного и замедленного типа).

Особая группа антигенов (чаще всего гаптены), которые вызывают реакции гиперчувствительности, — это пыльца растений, шерсть животных, волосы, перья, выделения насекомых, плесневые грибы и их споры, комнатная пыль, косметические, моющие, дезинфицирующие, лекарственные и другие средства. К пищевым аллергенам относятся рыба, молоко, яйца, орехи, томаты, земляника, цитрусовые. Сенсибилизацию к аллергенам могут вызвать амино-, нитро- и азосочетания. При диагностике используют кожные пробы, которые позволяют выявить активный аллерген для определенного лица.

Понравилась статья? Поделиться с друзьями: