Предел звука. Звукоизоляция

Выпустив видеокарты RX 400 серии, AMD за раз решили сделать процесс разгона проще, удобнее, более надежным и дав возможность, отказавшись от OverDrive в пользу созданной с чистого листа WattMan. Добраться до этой утилите можно запустив «Настройки Radeon» , после чего мышью поочередно нажать «Игры (найдете в меню сверху)» -> «Глобальные настройки (первый пункт с левой стороны)» -> «Глобальный WattMan» .

Тут нужно подробно остановиться на каждом пункте. С графиками, думаю, разберетесь сами, ничего там сложно там, разработчики только дали возможность ненужные пункты. Вот все остальное весьма полезное для разгона, за исключением нескольких непонятных пары пунктов.

GPU

В этом разделе собрано все, отвечающее за работу графического чипа.

«Частоты (Frequency)» –позволит изменять частоту работу графического чипа.

Вы можете менять частоту в процентном соотношении относительно заданных производителем в BIOS, на 30% в плюс или минус, тягая ползунок мышью. При этом меняются во всех семи режимах работы чипа. Это не самый удобный способ разгона, для начала вам придется узнавать, прошитые в BIOS рабочие частоты производителем для каждого из состояний, а потом с калькулятором считать, что в итоге будет получиться. Плюс нас интересует только максимально возможные частоты, на которой обычно работает графический чип в играх, то есть только состояние 6 и 7.

Переключив переключать до появления надписи «Динамически », сможете руками вбить нужное значение в каждом из семи режимов работы процессора, которое должно быть кратное 10. Именно здесь стоит экспериментировать с разгоном процессора, где методом перебора находя частоту, на которой ваша видеокарта будет стабильно работать. Учтите , если вы собираетесь менять частоты, «Контроль Напряжения» нужно переключить в ручной режим, чтоб умный BIOS автоматически не задирал напряжение, серьезно увеличивая энергопотребление видеокарты.

«Контроль Напряжения» – позволит изменить рабочее напряжение процессора. Видеокарта может в двух режимах, которые называются «Автоматически » и «Вручную» . Первый нас не особо интересует, напряжение регулирует BIOS в полностью автоматическом режиме. Второй то, что нам нужно, где для каждого из состояние процессора можем вбить напряжение питания. Если карту разгоняем, то увеличиваем напряжение, в рамках разумного конечно, потому что резко возрастет энергопотребление видеокарты, нагрев процессора и подсистемы питания. Не забывайте по умолчанию в не модифицированных заводских BIOS напряжение можно поднять только до 1.175 вольт.

Memory

В Memory можно подкрутить работу памяти на графической карте. Настройки полностью идентичны графическому процессору, то есть доступно изменения частоты работы и напряжения питания, которые можно менять двигая ползунки в процентном соотношении или передвинув переключатели, вручную вбивать точные значения. Вот только в отличии от графического процессора память имеет только два состояния, а разгон по частоте в заводских BIOS ограничен 2200Мгц. Плюс напряжение питания меняется не чипов памяти, а контроллера памяти. Зачастую при понижении вольтажа контроллера памяти на видеокартах RX 480 и RX 470 серии, память лучше разгоняется.

Fan

Этот раздел позволяет настроить работу вентиляторов на видеокарте, где «Мин» это минимальная скорость, а «Целевая» максимально возможное количество оборотов.

Передвинув переключатель «Speed» до появления надписи «Вручную » получаем возможность настраивать скорость работы вентиляторов. Нам будут доступно изменения минимальное и максимальное скорости вращения крыльчатки, которая будет меняться линейно в зависимости от температуры процессора. То есть чем выше поднимается температура, тем сильней будут раскручиваться вентиляторы.

Так же «Мин. акустический предел» это частота графического процессора, при опускании до которой, вентиляторы на видеокарте начинают плавно сбрасывать обороты, если температура чипа не выше «Целевой» (что это такое можете узнать ниже). То есть чем ниже здесь выставлено значение, тем дольше будут сбрасываться обороты вентиляторов системы охлаждения, чем больше, тем быстрей.

Temperature

В разделе Temperature можно настроить пороговую температуру графического чипа. «Целевая» видеокарта будет стараться, что выше её не поднималась, при необходимости раскручивая вентиляторы до максимума. «Макс.» — максимально допустимая температура, при достижении которой частота графического чипа будет сбрасываться чтоб выше её не поднималась.

«Ограничение энергопотребления» – задаем максимально возможный уровень энергопотребления, в случае его превышения сбрасываются частоты.

Chill

Начиная с драйверов Radeon Software Crimson ReLive Edition AMD 16.12.1, здесь появился новый Chill где пользователи получают доступ к новой одноименной интеллектуальной функции управления энергопотребления. Грубо говоря драйвер автоматически меняет частоту кадров (читай нагрузку на графический процессор) увеличивая в динамических сценах и уменьшая в статических. На данный момент это экспериментальная функция, которая поддерживаться пару десятков игр и можно смело её выключать.

«Chill» — здесь выключаем выклюем эту функцию.

Перед началом экспериментов с видеокартой, учтите, что графические чипы архитекторы Polaris, RX 480 и RX 470, больше нагреваются от увеличения напряжения питания, чем частоты. Так же напряжение питания памяти, а фактически контролера памяти, не может быть ниже напряжения питания графического чипа, то есть с 5 по 7 состояния процессора, вольтаж на чипе ниже 1 вольта опускать не будет. Плюс как уже писалось выше, если собираетесь увеличивать частоту процессора обязательно нужно переключать «Контроль Напряжения» в ручной режим, иначе видеокарта автоматически будет увеличивать напряжение, а это приведет к еще большему энергопотреблению.

Перед тем как начинать что-то крутить, запускаем тесты, используя для мониторинга частоты графического процессора программу MSI Afterburner и HWiNFO. Если они постоянно сбрасываться при высоких нагрузках, это значит, что скорей всего, видеокарта постоянно выходит за разрешенный лимит энергопотребления. Многие производители, перестраховываясь, изначально сильно занижают энергопотребление. В этом случае нужно в «Ограничение энергопотребление» увеличить это лимит, потянув ползунов в правую сторону. Ниже в таблице приведены приблизительные значения максимального энергопотребления, зашитого в BIOS производителями, исходя из которых, вы может прикинуть, на сколько вы увеличили лимит.

Видеокарты RX 470:

Asus Strix -95Вт

MSI Gaming X — 150Вт

Sapphire Nitro+ — 130Вт

Sapphire Nitro+OC — 130Вт

Gigabyte G1 Gaming – 105Вт

PowerColor Red Devil – 110 Вт

XFX — 92 Вт/89Вт/92Вт/87Вт

Видеокарты RX 480:

Asus Dual — 99Вт

Asus Strix – 130Вт

MSI Gaming X — 180Вт

Sapphire Nitro+ OC- 145Вт/140Вт/150Вт

Gigabyte G1 Gaming – 127Вт

Red Devil — 110Вт/150Вт/165Вт

XFX — 110Вт/115Вт

Если у вашей видеокарты 8-контактный разъем питания, то теоретически нагрузка может доходить до 255 Ватт. Но это теоретический максимум, вам вполне хватит лимит 180 Ватт.

После этого желательно поиграть в игры (обратите внимание не ограничиться запуском бенчмарков и всяких тестовых программ, а именно реальные игр ) требовательные к видеокарте с мониторингом частоты графического процессора. Если частота не сбрасывается и нет микрофризов, тогда можно приступать к разгону. В ином случае вам лучше добиться стабильности работы видеокарты, где помимо увеличения энергопотребления, можно так же сделать даунвольт (что это такое можете почитать ниже), а в особо клинических случаях жертвовать производительностью, уменьшая максимальную рабочую частоту графического процессора.

При разгоне в разделе GPU постепенно увеличиваем частоту, проверяя тестами на стабильность работы. Обычно при стандартном напряжении питания в 1,500 вольт RX 480 без проблем берет частоту 1360 мегагерца, а увеличив вольтаж до 1,750, берет 1400 мегагерц. То же самое проделываем с памятью, за раз поглядывая в HWiNFO на количество ошибок. В среднем память может работать на частоте 2150 — 2200 мегагерц. Но учтите при повышении частоты, автоматически повышаются тайминги, в итоге память может работать даже медленней чем на стандартной частоте. Изменить тайминги можно только отредактировав BIOS видеокарты, но это отдельная тема разговора.

Что касается RX 470 то с разгоном чипа ситуация похожая на RX 480, а вот разгонный потенциал памяти, зависит от производителя. Лучшей считается памяти Samsung которую ставят Sapphire RX 470 Nitro+, которая легко берет частоту за 2000 мегагерца.

Для даунвольтинга, а проще говоря, уменьшение напряжения, для снижения нагрева и энергопотребления графической карты, снижаем напряжение на графическом чипе и памяти, гоняем тесты, находя минимальное значение, при котором все стабильно будет работать, без артефактов и падения драйверов. В моем случае RX 480 на частоте 1290Мгц, прекрасно работает при напряжении питания 1,090 вольт, а напряжения питания памяти в среднем удается уменьшить на 0,1-0,05 вольта.

После того как подобрали оптимальные частоты для графического чипа и вольтаж, стоит заняться вентиляторами. Тот есть вам нужно подобрать такую частоту вращения, чтоб все сильно не шумело, при этом температура графического чипа, и системы питания находилась на приемлемом значении. Графический процессор спокойно можно работать при 80, а питания 95-100 градусов по Цельсию, но лучше целевой температурой чипа ставить 70-75 градусов, при которой, на видеокартах большинства производителей, вы не будете слышать системы охлаждения, даже при очень высоких нагрузках. Что касается нагрева цепей питания, то экспериментально найти такое значение оборотов вентиляторов, чтоб температура не выходила за пределы 80-85 градусов.

Перед тем как начнете экспериментировать с разгоном видеокарты с помощью WattMan, нужно закрыть (или как минимуму все сбросить до значений по умолчание) сторонние утилиты вроде MSI Afterburner, с мощью которых можно менять напряжение и частоту работу графического чипа, если не хотите чтоб программа не закрывалась с ошибкой, или неправильно выставлялся вольтаж, частота или обороты вентилятора видеокарты.

PS Статья постоянно изменяется и редактируется, если нашли ошибки пишите о них в комментариях.

8417 0

Kаким бы методом исследования не пользовались при аудиологическом изучении слуховой функции, существенными являются представления об основных физических характеристиках звуковых сигналов. Ниже будут представлены лишь самые основные понятия акустики и электроакустики.

Значения скорости распространения звуковой волны при разной температуре


Звук в природе распространяется в виде изменяющегося во времени возмущения упругой среды. Колебательные движения частиц такой yпругой среды, возникающие под воздействием звука, называются звуковыми колебаниями, а пространство распространения звуковых колебаний создает звуковое поле. Если среда, в которой распространяются звуковые колебания, является жидкой или газообразной, то частицы в этих средах колеблются вдоль линии распространения звука и поэтому их принято рассматривать как продольные колебания.

При распространении звука в твердых телах, наряду с продольными колебаниями, наблюдаются и поперечные звуковые колебания. Естественно, что распространение колебаний в среде должно иметь какое-либо направление. Это направление называется звуковым лучом, а поверхность, соединяющую все смежные точки звуковой волны с одинаковой фазой колебаний, принято называть фронтом звуковой волны. Кроме того, звуковые волны в различных средах распространяются с различной скоростью. При этом необходимо учитывать, что значение скорости определяется плотностью среды, в которой распространяется звуковая волна.

Сведения о значениях плотности звуковой среды весьма существенны, так как эта плотность создает определенное акустическое сопротивление распространению звуковой волны. На скорость распространения звуковой волны влияет также температура среды: при повышении температуры среды скорость распространения звуковой волны возрастает.

Основными для аудиологического обследования физическими характеристиками звука являются его интенсивность и частота. Именно поэтому они будут рассмотрены более подробно.

Для перехода к физической характеристике интенсивности звука вначале необходимо рассмотреть ряд других параметров звуковых сигналов, имеющих отношение к их интенсивности.

Звуковое давление - p(t) - характеризует силу, действующую на площадь, расположенную перпендикулярно к движению частиц. В системе СИ звуковое давление измеряется в Ньютонах. Ньютон - это сила, придающая массе в 1 кг ускорение в 1 м/с за 1 с и действующая на 1 квадратный метр, сокращенно Н/м2.

В литературе приводятся и другие единицы измерения звукового давления. Ниже представлено соотношение основных используемых единиц:

1Н/м2-10 дин/см2=10 мкбар (микробар)

Энергия акустических колебаний (Е) характеризует энергию частиц, движущихся под действием звукового давления (измеряется в джоулях - Дж).

Oтнесение энергии на единицу площади характеризует акустическую плотность, измеряемую в Дж/м2. Собственно интенсивность звуковых колебаний определяется как мощность или плотность акустического потока за единицу времени, т.е. Дж/м2/с или Вт/м2.

Человек и животные воспринимают весьма большой диапазон звуковых давлений (от 0,0002 до 200 мкбар). Поэтому для удобства измерения принято пользоваться относительными величинами, а именно, десятичной или натуральной шкалами логарифмов. Звуковое давление измеряется в децибелах и белах (1Б = 10 дБ), если используются логарифмы с десятичным основанием. Иногда (довольно редко) звуковое давление измеряется в ненерах (1Нн = 8,67 дБ); в этом случае используются натуральные логарифмы, т.е. логарифмы не с десятичными (как в случае с Б и дБ), а с двоичным основанием.

Однако следует учесть, что оценка в белах и децибелах была принята как логарифмическая мера отношения мощностей. Между тем, мощность и интенсивность пропорциональны квадрату звукового давления. Поэтому дня перехода к интенсивности звука устанавливаются следующие oтношения:


где N - интенсивность или звуковое давление (Р) в белах (Б) или децибелах (дБ), I0 и Р0 - условно принимаемые уровни отсчета интенсивности и звукового давления. Обычно уровнем отсчета звукового давления (часто в литературе используется сокращение "УЗД", от начальных букв слов "уровень звукового давления", а в английском языке используется аббревиатура - "SPL" (от идентичного выражения "Sound Pressure Level") считается 2x10-5 Н/м2. Соотношения УЗД с другими единицами измерения интенсивности звука выглядит следующим образом:

2х10-5 Н/м2=2х10-4дин/см2=2х10-4 мкбар

Рассмотрим теперь акустические характеристики частоты звуковых сигналов. В большинстве случаев для обследования слуховой функции используют гармонические звуковые сигналы.

Гармонический звуковой сигнал (иначе синусоидальный сигнал или чистый тон), обладающий также начальной фазой включения тонального сигнала, помимо звукового давления, характеризуется такой важной физической характеристикой как длина волны. Все гармонические звуковые сигналы (или чистые тоны) обладают периодичностью (т.e., периодом Т). В этом случае длина звуковой волны определяется как расстояние между соседними фронтами волны при одинаковой фазе колебаний и вычисляется по формуле:

J = с х Т

Где с - скорость распространения звуковых колебаний (обычно м/с), I их периодичность. При этом частота звуковых колебаний (f) соответствует формуле:

f = J/Т

Частоту тона оценивают количеством звуковых колебаний в секунду и выражают в герцах (сокращенно - Гц). Исходя из диапазона воспринимаемых человеком частот звуковых колебаний, частоты в диапазоне 20 - 20000 Гц называют звуковыми, более низкие частоты (f < 20 Гц) называют инфразвуками, а более высокие (f > 20000 Гц) - ультразвуками.

В свою очередь, чисто из практических соображений, диапазон звуковых частот иногда условно делят на низкие - ниже 500 Гц, средние 500-4000 Гц и высокие - 4000 Гц и выше. Заметим, что для обозначения звуковых колебаний от 1000 Гц и выше часто пользуются обозначением килогерц, сокращенно кГц.


Схематическое изображение формы и спектра ряда звуковых сигналов, используемых при аудиологических исследованиях:

1 - тональный сигнал; 2 - короткий звуковой импульс (щелчок); 3 -шумовой сигнал; 4 - короткая тональная посылка; 5 - амплитудно-модулированный сигнал (Т - период амплитудной модуляции); 6 - частотно-модулированный сигнал.


Если в звуковом сигнале представлено много разных частот (в идеале все частоты звукового спектра), то возникает, так называемый, шумовой сигнал.

Одним из методов аудиологического обследования больных является акустическая импедансометрия. Поэтому рассмотрим более подробно еще одну физическую характеристику звуковых сигналов.

Хорошо известно, что при распространении в средах разные виды энергии встречают определенное сопротивление. Выше указывалось, что такое же сопротивление встречает и акустическая энергия при распространении звуковых волн в акустических системах. Из последующего изложения станет очевидным, что периферические отделы слуховой системы, т.е. наружное и среднее ухо, представляют собой с физической точки зрения типичные акустические системы, а именно, акустические приемники звука. Поэтому и необходимо рассмотрение существа и характеристик акустического сопротивления с учетом прохождения звуковых сигналов через периферические отделы слуховой системы.

Комплексное акустическое сопротивление или акустический импеданс определяется как общее сопротивление прохождению акустической энергии в акустических системах. Акустический импеданс представляет собой отношение комплексных амплитуд звукового давления к колебательной объемной скорости и описывается формулой:

Za = ReZa + ilmZa

В этом уравнении ReZa представляет собой активное акустическое сопротивление (иначе его называют истинным или резистивным сопротивлением), которое связано диссипацией энергии в самой аккустической системе. Под диссипацией энергии понимают ее рассеивание в переход энергии упорядоченных процессов (какой, например, является кинетическая энергия звуковых волн) в энергию неупорядоченных процессов (в конечном итоге - в теплоту). Вторая часть уравнения ilmZa (его мнимая часть) получила название реактивного акустического сопротивления, которое обусловлено силами инерции или силами упругости, податливости или гибкости.

Ниже будет подробно изложена процедура исследования акустического импеданса среднего уха при ряде существенных для аудиологического обследования измерений (тимпанометрия, импедансометрия).

Я.А. Альтман, Г. А. Таварткиладзе

1. Звук, виды звука.

2. Физические характеристики звука.

3. Характеристики слухового ощущения. Звуковые измерения.

4. Прохождение звука через границу раздела сред.

5. Звуковые методы исследования.

6. Факторы, определяющие профилактику шума. Защита от шума.

7. Основные понятия и формулы. Таблицы.

8. Задачи.

Акустика. В широком смысле - раздел физики, изучающий упругие волны от самых низких частот до самых высоких. В узком смысле - учение о звуке.

3.1. Звук, виды звука

Звук в широком смысле - упругие колебания и волны, распространяющиеся в газообразных, жидких и твердых веществах; в узком смысле - явление, субъективно воспринимаемое органами слуха человека и животных.

В норме ухо человека слышит звук в диапазоне частот от 16 Гц до 20 кГц. Однако с возрастом верхняя граница этого диапазона уменьшается:

Звук с частотой ниже 16-20 Гц называется инфразвуком, выше 20 кГц -ультразвуком, а самые высокочастотные упругие волны в диапазоне от 10 9 до 10 12 Гц - гиперзвуком.

Звуки, встречающиеся в природе, разделяют на несколько видов.

Тон - это звук, представляющий собой периодический процесс. Основной характеристикой тона является частота. Простой тон создается телом, колеблющимся по гармоническому закону (например, камертоном). Сложный тон создается периодическими колебаниями, которые не являются гармоническими (например, звук музыкального инструмента, звук, создаваемый речевым аппаратом человека).

Шум - это звук, имеющий сложную неповторяющуюся временную зависимость и представляющий собой сочетание беспорядочно изменяющихся сложных тонов (шелест листьев).

Звуковой удар - это кратковременное звуковое воздействие (хлопок, взрыв, удар, гром).

Сложный тон, как периодический процесс, можно представить в виде суммы простых тонов (разложить на составляющие тоны). Такое разложение называется спектром.

Акустический спектр тона - это совокупность всех его частот с указанием их относительных интенсивностей или амплитуд.

Наименьшая частота в спектре (ν) соответствует основному тону, а остальные частоты называют обертонами или гармониками. Обертоны имеют частоты, кратные основной частоте: 2ν, 3ν, 4ν, ...

Обычно наибольшая амплитуда спектра соответствует основному тону. Именно он воспринимается ухом как высота звука (см. ниже). Обертоны создают «окраску» звука. Звуки одной и той же высоты, созданные разными инструментами, воспринимаются ухом по-разному именно из-за различного соотношения между амплитудами обертонов. На рисунке 3.1 показаны спектры одной и той же ноты (ν = 100 Гц), взятой на рояле и кларнете.

Рис. 3.1. Спектры ноты рояля (а) и кларнета (б)

Акустический спектр шума является сплошным.

3.2. Физические характеристики звука

1. Скорость (v). Звук распространяется в любой среде, кроме вакуума. Скорость его распространения зависит от упругости, плотности и температуры среды, но не зависит от частоты колебаний. Скорость звука в газе зависит от его молярной массы (М) и абсолютной температуры (Т):

Скорость звука в воде равна 1500 м/с; близкое значение имеет скорость звука и в мягких тканях организма.

2. Звуковое давление. Распространение звука сопровождается изменением давления в среде (рис. 3.2).

Рис. 3.2. Изменение давления в среде при распространении звука.

Именно изменения давления вызывают колебания барабанной перепонки, которые и определяют начало такого сложного процесса, как возникновение слуховых ощущений.

Звуковое давление Ρ) - это амплитуда тех изменений давления в среде, которые возникают при прохождении звуковой волны.

3. Интенсивность звука (I). Распространение звуковой волны сопровождается переносом энергии.

Интенсивность звука - это плотность потока энергии, переносимой звуковой волной (см. формулу 2.5).

В однородной среде интенсивность звука, испущенного в данном направлении, убывает по мере удаления от источника звука. При использовании волноводов можно добиться и увеличения интенсивности. Типичным примером такого волновода в живой природе является ушная раковина.

Связь между интенсивностью (I) и звуковым давлением (ΔΡ) выражается следующей формулой:

где ρ - плотность среды; v - скорость звука в ней.

Минимальные значения звукового давления и интенсивности звука, при которых у человека возникают слуховые ощущения, называются порогом слышимости.

Для уха среднего человека на частоте 1 кГц порогу слышимости соответствуют следующие значения звукового давления (ΔΡ 0) и интенсивности звука (I 0):

ΔΡ 0 = 3х10 -5 Па (≈ 2х10 -7 мм рт.ст.); I 0 = 10 -12 Вт/м 2 .

Значения звукового давления и интенсивности звука, при которых у человека возникают выраженные болевые ощущения, называются порогом болевого ощущения.

Для уха среднего человека на частоте 1 кГц порогу болевого ощущения соответствуют следующие значения звукового давления (ΔΡ m) и интенсивности звука (I m):

4. Уровень интенсивности (L). Отношение интенсивностей, соответствующих порогам слышимости и болевого ощущения, столь велико (I m /I 0 = 10 13), что на практике используют логарифмическую шкалу, вводя специальную безразмерную характеристику - уровень интенсивности.

Уровнем интенсивности называют десятичный логарифм отношения интенсивности звука к порогу слышимости:

Единицей измерения уровня интенсивности является бел (Б).

Обычно используют более мелкую единицу уровня интенсивности - децибел (дБ): 1 дБ = 0,1 Б. Уровень интенсивности в децибелах вычисляется по следующим формулам:

Логарифмический характер зависимости уровня интенсивности от самой интенсивности означает, что при увеличении интенсивности в 10 раз уровень интенсивности возрастает на 10 дБ.

Характеристики часто встречающихся звуков приведены в табл. 3.1.

Если человек слышит звуки, приходящие с одного направления от нескольких некогерентных источников, то их интенсивности складываются:

Высокий уровень интенсивности звука приводит к необратимым изменениям в слуховом аппарате. Так, звук в 160 дБ может вызвать разрыв барабанной перепонки и смещение слуховых косточек в среднем ухе, что приводит к необратимой глухоте. При 140 дБ человек ощущает сильную боль, а продолжительное действие шума в 90-120 дБ приводит к поражению слухового нерва.

3.3. Характеристики слухового ощущения. Звуковые измерения

Звук является объектом слухового ощущения. Он оценивается человеком субъективно. Все субъективные характеристики слухового ощущения связаны с объективными характеристиками звуковой волны.

Высота, тембр

Воспринимая звуки, человек различает их по высоте и тембру.

Высота тона обусловлена прежде всего частотой основного тона (чем больше частота, тем более высоким воспринимается звук). В меньшей степени высота зависит от интенсивности звука (звук большей интенсивности воспринимается более низким).

Тембр - это характеристика звукового ощущения, которая определяется его гармоническим спектром. Тембр звука зависит от числа обертонов и от их относительных интенсивностей.

Закон Вебера-Фехнера. Громкость звука

Использование логарифмической шкалы для оценки уровня интенсивности звука хорошо согласуется с психофизическим законом Вебера-Фехнера:

Если увеличивать раздражение в геометрической прогрессии (т.е. в одинаковое число раз), то ощущение этого раздражения возрастает в арифметической прогрессии (т.е. на одинаковую величину).

Именно логарифмическая функция обладает такими свойствами.

Громкостью звука называют интенсивность (силу) слуховых ощущений.

Ухо человека имеет различную чувствительность к звукам различных частот. Для учета этого обстоятельства можно выбрать некоторую опорную частоту, а восприятие остальных частот сравнивать с нею. По договоренности опорную частоту приняли равной 1 кГц (по этой причине и порог слышимости I 0 установлен для этой частоты).

Для чистого тона с частотой 1 кГц громкость (Е) принимают равной уровню интенсивности в децибелах:

Для остальных частот громкость определяют путем сравнения интенсивности слуховых ощущений с громкостью звука на опорной частоте.

Громкость звука равна уровню интенсивности звука (дБ) на частоте 1 кГц, вызывающего у «среднего» человека такое же ощущение громкости, что и данный звук.

Единицу громкости звука называют фоном.

Ниже приводится пример зависимости уровня громкости от частоты при уровне интенсивности 60 дБ.

Кривые равной громкости

Детальную связь между частотой, громкостью и уровнем интенсивности изображают графически с помощью кривых равной громкости (рис. 3.3). Эти кривые демонстрируют зависимость уровня интенсивности L дБ от частоты ν звука при заданной громкости звука.

Нижняя кривая соответствует порогу слышимости. Она позволяет найти пороговое значение уровня интенсивности (Е = 0) при заданной частоте тона.

С помощью кривых равной громкости можно найти громкость звука, если известны его частота и уровень интенсивности.

Звуковые измерения

Кривые равной громкости отражают восприятие звука средним человеком. Для оценки слуха конкретного человека применяется метод тональной пороговой аудиометрии.

Аудиометрия - метод измерения остроты слуха. На специальном приборе (аудиометре) определяется порог слухового ощущения, или порог восприятия, L П на разных частотах. Для этого с помощью звукового генератора создают звук заданной частоты и, увеличивая уро-

Рис. 3.3. Кривые равной громкости

вень интенсивности L, фиксируют пороговый уровень интенсивность L п, при котором у испытуемого появляются слуховые ощущения. Меняя частоту звука, получают экспериментальную зависимость L п (v), которую называют аудиограммой (рис. 3.4).

Рис. 3.4. Аудиограммы

Нарушение функции звуковоспринимающего аппарата может привести к тугоухости - стойкому снижению чувствительности к различным тонам и шепотной речи.

Международная классификация степеней тугоухости, основанная на усредненных значениях порогов восприятия на речевых частотах, приведена в табл. 3.2.

Для измерения громкости сложного тона или шума используют специальные приборы - шумомеры. Звук, принимаемый микрофоном, преобразуется в электрический сигнал, который пропускается через систему фильтров. Параметры фильтров подобраны так, что чувствительность шумомера на различных частотах близка к чувствительности человеческого уха.

3.4. Прохождение звука через границу раздела сред

При падении звуковой волны на границу раздела между двумя средами звук частично отражается, а частично проникает во вторую среду. Интенсивности отраженной и прошедшей через границу волн определяются соответствующими коэффициентами.

При нормальном падении звуковой волны на границу раздела сред справедливы следующие формулы:

Из формулы (3.9) видно, что чем сильнее различаются волновые сопротивления сред, тем большая доля энергии отражается на границе раздела. В частности, если величина х близка к нулю, то коэффициент отражения близок к единице. Например, для границы воздух-вода х = 3х10 -4 , а r = 99,88 %. То есть отражение является практически полным.

В таблице 3.3 приведены скорости и волновые сопротивления некоторых сред при 20 °С.

Отметим, что значения коэффициентов отражения и преломления не зависят от того порядка, в котором звук проходит данные среды. Например, для перехода звука из воздуха в воду значения коэффициентов такие же, как для перехода в обратном направлении.

3.5. Звуковые методы исследования

Звук может быть источником информации о состоянии органов человека.

1. Аускультация - непосредственное выслушивание звуков, возникающих внутри организма. По характеру таких звуков можно определить, какие именно процессы протекают в данной области тела, и в некоторых случаях установить диагноз. Приборы, применяемые для выслушивания: стетоскоп, фонендоскоп.

Фонендоскоп состоит из полой капсулы с передающей мембраной, которая прикладывается к телу, от нее идут резиновые трубки к уху врача. В полой капсуле возникает резонанс столба воздуха, вызывающий усиление звучания и, следовательно, улучшение выслушивания. Выслушиваются дыхательные шумы, хрипы, тоны сердца, шумы в сердце.

В клинике используются установки, в которых выслушивание осуществляется при помощи микрофона и динамика. Широко

применяется запись звуков с помощью магнитофона на магнитную ленту, что дает возможность их воспроизведения.

2. Фонокардиография - графическая регистрация тонов и шумов сердца и их диагностическая интерпретация. Запись осуществляется с помощью фонокардиографа, который состоит из микрофона, усилителя, частотных фильтров, регистрирующего устройства.

3. Перкуссия - исследование внутренних органов посредством постукивания по поверхности тела и анализа возникающих при этом звуков. Постукивание осуществляется либо с помощью специальных молоточков, либо при помощи пальцев.

Если в замкнутой полости вызвать звуковые колебания, то при определенной частоте звука воздух в полости начнет резонировать, усиливая тот тон, который соответствует размеру полости и ее положению. Схематично тело человека можно представить суммой разных объемов: газонаполненных (легкие), жидких (внутренние органы), твердых (кости). При ударе по поверхности тела возникают колебания с разными частотами. Часть из них погаснет. Другие совпадут с собственными частотами пустот, следовательно, усилятся и из-за резонанса будут слышны. По тону перкуторных звуков определяют состояние и топографию органа.

3.6. Факторы, определяющие профилактику шума.

Защита от шума

Для профилактики шума необходимо знать основные факторы, определяющие его воздействие на организм человека: близость источника шума, интенсивность шума, длительность воздействия, ограниченность пространства, в котором действует шум.

Длительное воздействие шума вызывает сложный симптоматический комплекс функциональных и органических изменений в организме (и не только органа слуха).

Воздействие длительного шума на ЦНС проявляется в замедлении всех нервных реакций, сокращении времени активного внимания, снижении работоспособности.

После длительного действия шума изменяется ритм дыхания, ритм сердечных сокращений, возникает усиление тонуса сосудистой системы, что приводит к повышению систолического и диастоли-

ческого уровня кровяного давления. Изменяется двигательная и секреторная деятельность желудочно-кишечного тракта, наблюдается гиперсекреция отдельных желез внутренней секреции. Имеет место повышение потливости. Отмечается подавление психических функций, особенно памяти.

Специфическое действие оказывает шум на функции органа слуха. Ухо, как и все органы чувств, способно адаптироваться к шуму. При этом под действием шума порог слышимости повышается на 10-15 дБ. После прекращения шумового воздействия нормальное значение порога слышимости восстанавливается только через 3-5 минут. При высоком уровне интенсивности шума (80-90 дБ) его утомляющее действие резко усиливается. Одной из форм расстройства функции органа слуха, связанной с длительным воздействием шума, является тугоухость (табл. 3.2).

Сильное воздействие как на физическое, так и на психологическое состояние человека оказывает рок-музыка. Современная рок-музыка создает шум в диапазонах от 10 Гц до 80 кГц. Экспериментально установлено, что если основной ритм, задаваемый ударными инструментами, имеет частоту 1,5 Гц и имеет мощное музыкальное сопровождение на частотах 15-30 Гц, то у человека наступает сильное возбуждение. При ритме с частотой 2 Гц при таком же сопровождении человек впадает в состояние, близкое наркотическому опьянению. На рок-концертах интенсивность звука может превышать 120 дБ, хотя человеческое ухо настроено наиболее благоприятно на среднюю интенсивность 55 дБ. При этом могут возникать контузии звуком, звуковые «ожоги», потеря слуха и памяти.

Шум оказывает вредное воздействие и на орган зрения. Так, длительное воздействие производственного шума на человека, находящегося в затемненном помещении, приводит к заметному снижению активности сетчатки глаза, от которой зависит работа глазного нерва, а следовательно, и острота зрения.

Защита от шума достаточно сложна. Это связано с тем, что вследствие сравнительно большой длины волны звук огибает препятствия (дифракция) и звуковая тень не образуется (рис. 3.5).

Кроме того, многие материалы, применяемые в строительстве и технике, имеют недостаточно высокий коэффициент поглощения звука.

Рис. 3.5. Дифракция звуковых волн

Эти особенности требуют специальных средств борьбы с шумами, к которым относятся подавление шумов, возникающих в самом источнике, использование глушителей, применение упругих подвесов, звукоизолирующих материалов, устранение щелей и т.п.

Для борьбы с шумами, проникающими в жилые помещения, большое значение имеют правильное планирование расположения зданий, учет розы ветров, создание защитных зон, в том числе и растительных. Растения - хороший гаситель шума. Деревья и кустарники могут снижать уровень интенсивности на 5-20 дБ. Эффективны зеленые полосы между тротуаром и мостовой. Лучше всего шум гасят липы и ели. Дома, находящиеся позади высокого хвойного заслона, могут быть избавлены от шумов улицы почти полностью.

Борьба с шумом не предполагает создания абсолютной тишины, так как при длительном отсутствии слуховых ощущений у человека могут возникнуть расстройства психики. Абсолютная тишина и длительный повышенный шум одинаково противоестественны для человека.

3.7. Основные понятия и формулы. Таблицы

Продолжение таблицы

Окончание таблицы

Таблица 3.1. Характеристики встречающихся звуков

Таблица 3.2. Международная классификация тугоухости

Таблица 3.3. Скорость звука и удельное акустическое сопротивление для некоторых веществ и тканей человека при t = 25 °С

3.8. Задачи

1. Звук, которому на улице соответствует уровень интенсивности L 1 = 50 дБ, слышен в комнате так, как звук с уровнем интенсивности L 2 = 30 дБ. Найти отношение интенсивностей звука на улице и в комнате.

2. Уровень громкости звука частотой 5000 Гц равен Е = 50 фон. Найти интенсивность этого звука, воспользовавшись кривыми равной громкости.

Решение

Из рисунка 3.2 находим, что на частоте 5000 Гц громкости Е =50 фон соответствует уровень интенсивности L = 47 дБ = 4,7 Б. Из формулы 3.4 находим: I = 10 4,7 I 0 = 510 -8 Вт/м 2 .

Ответ: I = 5?10 -8 Вт/м 2 .

3. Вентилятор создает звук, уровень интенсивности которого L = 60 дБ. Найти уровень интенсивности звука при работе двух рядом стоящих вентиляторов.

Решение

L 2 = lg(2x10 L) = lg2 + L = 0,3 + 6Б = 63 дБ (см. 3.6). Ответ: L 2 = 63 дБ.

4. Уровень громкости звука реактивного самолета на расстоянии 30 м от него равен 140 дБ. Каков уровень громкости на расстоянии 300 м? Отражением от земли пренебречь.

Решение

Интенсивность убывает пропорционально квадрату расстояния - уменьшается в 10 2 раз. L 1 - L 2 = 10xlg(I 1 /I 2) = 10x2 = 20 дБ. Ответ: L 2 = 120 дБ.

5. Отношение интенсивностей двух источников звука равно: I 2 /I 1 = 2. Чему равна разность уровней интенсивностей этих звуков?

Решение

ΔL = 10xlg(I 2 /I 0) - 10xlg(I 1 /I 0) = 10xlg(I 2 /I 1) = 10xlg2 = 3 дБ. Ответ: 3 дБ.

6. Каков уровень интенсивности звука с частотой 100 Гц, который имеет ту же громкость, что и звук с частотой 3 кГц и интенсивностью

Решение

Используя кривые равной громкости (рис. 3.3), найдем, что 25 дБ на частоте 3 кГц соответствуют громкости 30 фон. На частоте 100 Гц этой громкости соответствует уровень интенсивности 65 дБ.

Ответ: 65 дБ.

7. Амплитуда звуковой волны увеличилась в три раза. а) во сколько раз возросла ее интенсивность? б) на сколько децибел увеличился уровень громкости?

Решение

Интенсивность пропорциональна квадрату амплитуды (см. 3.6):

8. В лабораторном помещении, находящемся в цехе, уровень интенсивности шума достигал 80 дБ. С целью уменьшения шума было решено обить стены лаборатории звукопоглощающим материалом, уменьшающим интенсивность звука в 1500 раз. Какой уровень интенсивности шума станет после этого в лаборатории?

Решение

Уровень интенсивности звука в децибелах: L = 10x lg(I/I 0). При изменении интенсивности звука изменение уровня интенсивности звука будет равно:

9. Импедансы двух сред различаются в 2 раза: R 2 = 2R 1 . Какая часть энергии отражается от границы раздела и какая часть энергии переходит во вторую среду?

Решение

Используя формулы (3.8 и 3.9) найдем:

Ответ: 1/9 часть энергии отражается, а 8/9 переходит во вторую среду.

В повседневной жизни мы описываем звук, указывая, среди прочего, его громкость и высоту. Но с точки зрения физики звуковая волна - это периодическое колебание молекул среды, распространяющееся в пространстве. Как и всякая волна, звук характеризуется своей амплитудой, частотой, длиной волны и т. д. Амплитуда показывает, насколько сильно колеблющаяся среда отклоняется от своего «спокойного» состояния; именно она отвечает за громкость звука. Частота говорит о том, сколько раз в секунду происходит колебание, и чем больше частота, тем более высокий звук мы слышим.

Типичные значения громкости и частоты звука, которые встречаются, например, в технических нормативах и характеристиках аудиоустройств, адаптированы к человеческому уху, они находятся в комфортном для человека диапазоне громкости и частоты. Так, звук громкостью выше 130 дБ (децибел) вызывает болевые ощущения, а звуковую волну с частотой 30 кГц человек вообще не услышит. Однако кроме этих «человеческих» ограничений существуют и чисто физические пределы громкости и частоты звуковой волны.

Задача

Оцените максимальную громкость и максимальную частоту звуковой волны, которая может распространяться в воздухе и в воде при обычных условиях. Опишите в общих словах, что будет происходить, если попытаться излучить звук выше этих пределов.


Подсказка

Напомним, что громкость, измеряемая в децибелах, - это логарифмическая шкала, которая показывает, во сколько раз давление в звуковой волне (P) сильнее некоторого фиксированного порогового давления P 0 . Формула пересчета давления в громкости такова: громкость в децибелах = 20 lg(P/P 0), где lg - это десятичный логарифм. В качестве порогового давления в акустике принято брать P 0 = 20 мкПа (в воде принято другое пороговое значение: P 0 = 1 мкПа). Например, звук с давлением P = 0,2 Па превышает P 0 в десять тысяч раз, что соответствует громкости 20·lg(10000) = 80 дБ. Таким образом, предел громкости возникает из максимально возможного давления, которое может создавать звуковая волна.

Для решения задачи надо попытаться представить себе звуковую волну с очень большим давлением или очень большой частотой и постараться понять, какие физические ограничения при этом возникают.

Решение

Найдем вначале предел громкости . В спокойном воздухе (без звука) молекулы летают хаотично, но в среднем плотность воздуха остается постоянной. При распространении звука молекулы кроме быстрого хаотического движения испытывают еще и плавное смещение вперед-назад с некоторым периодом. Из-за этого возникают чередующиеся области сгущения и разряжения воздуха, то есть области повышенного и пониженного давления. Именно это отклонение давления от нормы и есть акустическое давление (давление в звуковой волне).

В области разряжения давление опускается до P атм – P. Ясно, что в газе оно должно оставаться положительным: нулевое давление означает, что в этой области в данный момент времени частиц нет совсем, и меньше этого быть уже не может. Поэтому максимальное акустическое давление P, которое звуковая волна может создавать, оставаясь при этом звуком, как раз равно атмосферному. P = P атм = 100 кПа. Ему отвечает теоретический предел громкости равный 20·lg(5·10 9), что дает примерно 195 дБ .

Ситуация слегка меняется, если речь идет про распространение звука не в газе, а в жидкости. Там давление может стать отрицательным - это просто означает, что сплошную среду пытаются растянуть, разорвать, но она за счет межмолекулярных сил выдерживает такое растяжение. Однако по порядку величины это отрицательное давление невелико, порядка одной атмосферы. С учетом другого значения для P 0 это дает теоретический предел громкости в воде около 225 дБ .

Получим теперь ограничение на частоту звука . (На самом деле, это лишь одно из возможных ограничений на частоту; о других мы упомянем в послесловии.)

Одно из ключевых свойств звука (в отличие от многих других, более сложных волн) состоит в том, что его скорость практически не зависит от частоты. Но скорость волны связывает частоту ν (то есть временну ю периодичность) с длиной волны λ (пространственной периодичностью): c = ν·λ. Поэтому чем выше частота, тем меньше длина звуковой волны.

Частоту волны ограничивает дискретность вещества. Длина звуковой волны не может быть меньше типичного расстояния между молекулами: ведь звуковая волна есть сгущение-разряжение частиц и не может существовать без них. Более того, длина волны должна составлять как минимум два-три таких расстояния: ведь она должна включать как области сгущения, так и область разряжения. Для воздуха в нормальных условиях среднее расстояние между молекулами составляет примерно 100 нм, скорость звука равна 300 м/с, поэтому максимальная частота составляет порядка 2 ГГц . В воде масштаб дискретности меньше, примерно 0,3 нм, а скорость звука составляет 1500 м/с. Это дает ограничение на частоту примерно в тысячу раз выше, порядка нескольких терагерц .

Обсудим теперь, что произойдет, если мы попытаемся излучить звук, превышающий найденные ограничения. В качестве излучателя звуковой волны подойдет погруженная в среду твердая пластина, которую мотор двигает взад-вперед. Технически осуществим излучатель с такой большой амплитудой, который в максимуме создает давление намного выше атмосферного - для этого достаточно двигать пластину быстро и с большой амплитудой. Однако тогда в фазе разряжения (когда пластина отходит назад) будет просто вакуум. Таким образом, вместо очень громкого звука такая пластина будет «нареза ть воздух» на тонкие и плотные слои и выбрасывать их вперед. Распространяться сквозь среду они не смогут - столкнувшись с неподвижным воздухом, они резко его нагреют, породят ударные волны, а сами разрушатся.

Можно представить себе и другую ситуацию, когда акустический излучатель колеблется с частотой, превышающей найденный предел частоты звука. Такой излучатель будет толкать молекулы среды, но так часто, что не даст им шанса сложиться в синхронное колебание. В результате пластина будет просто хаотично передавать энергию подлетающим молекулам, то есть будет попросту нагревать среду.

Послесловие

Наше рассмотрение было, конечно, очень простым и не принимало во внимание множество процессов, происходящих в веществе и также ограничивающих распространение звука. Например, вязкость приводит к затуханию звуковой волны, причем скорость этого затухания быстро увеличивается с частотой. Чем больше частота, тем быстрее газ движется вперед-назад, а значит, тем быстрее энергия превращается в тепло за счет вязкости. Поэтому в слишком вязкой среде высокочастотный ультразвук просто не успеет пролететь какое-либо макроскопическое расстояние.

В затухании звука играет роль и другой эффект. Из термодинамики следует, что при быстром сжатии газ нагревается, а при быстром расширении - охлаждается. Это происходит в том числе и в звуковой волне. Но если у газа большая теплопроводность, то при каждом колебании тепло будет перетекать из горячей зоны в холодную, ослабляя таким образом тепловой контраст, а в конечном счете - и амплитуду звуковой волны.

Стоит еще подчеркнуть, что все найденные ограничения относятся к жидкостям и газам при нормальных условиях; они изменятся при существенном изменении условий. Например, максимальная теоретическая громкость, очевидно, зависит от давления. Поэтому в атмосфере планет-гигантов, где давление существенно выше атмосферного, возможен и еще более громкий звук; и наоборот, в очень разреженной атмосфере все звуки неизбежно тихие.

Наконец, упомянем еще одно интересное свойство ультразвука очень большой частоты при его распространении в воде. Оказывается, когда частота звука существенно превышает 10 ГГц, его скорость в воде возрастает примерно вдвое и примерно сравнивается со скоростью звука во льду. Это означает, что некие быстрые процессы взаимодействия молекул воды начинают играть существенную роль при колебании с периодом меньше 100 пикосекунд. Условно говоря, вода приобретает некую дополнительную упругость на таких временных интервалах, что и ускоряет распространение звуковых волн. Микроскопические причины этого так называемого «быстрого звука», впрочем, были поняты

Психоаку́стика — наука, изучающая психологические ифизиологические особенности восприятия звука человеком.

Предпосылки

Во многих приложениях акустики и обработки звуковых сигналов необходимо знать, что люди слышат. Звук, который образуют волны давления воздуха, может быть точно измерен современным оборудованием. Однако понять, как эти волны принимаются и отображаются в нашем головном мозге — задача не такая простая. Звук это непрерывный аналоговый сигнал, который (в предположении, что молекулы воздуха бесконечно малы) может теоретически переносить бесконечное количество информации (может быть бесконечное число частот, содержащих информацию об амплитуде и фазе).

Понимание процессов восприятия позволит ученым и инженерам сосредоточиться на возможностях слуха и не учитывать менее важные возможности других систем. Важно также отметить, что вопрос «что человек слышит» не только вопрос о физиологических возможностях уха, но во многом также вопрос психологии, чёткости восприятия.

Пределы восприятия звука

Человеческое ухо номинально слышит звуки в диапазоне от 20 до 20 000 Гц. Верхний предел имеет тенденцию снижаться с возрастом. Большинство взрослых людей не могут слышать выше 16 кГц. Ухо само по себе не реагирует на частоты ниже 20 Гц, но они могут ощущаться через органы осязания.

Частотное разрешение звука в середине диапазона около 2 Гц. То есть изменение частоты более чем на 2 Гц ощущается. Однако есть возможность слышать еще меньшую разницу. Например, в случае, если оба тона приходят одновременно, в результате сложения двух колебаний возникает модуляция амплитуды сигнала с частотой, равной разности исходных частот. Этот эффект известен также как биение.

Диапазон громкости воспринимаемых звуков огромен. Наша барабанная перепонка в ухе чувствительна только к изменению давления. Громкость звука принято измерять в децибелах (дБ). Нижний порог слышимости определен как 0 Дб, а определение верхнего предела слышимости относится скорее к вопросу, при какой громкости начнётся разрушение уха. Этот предел зависит от того, сколько мы слышим звук. Ухо способно пререносить кратковременное повышение громкости до 120 дБ без последствий, но долговременное восприятие звкуков громкостью болеее 80 дБ может вызвать потерю слуха.

Более тщательные исследования нижней границы слуха показали, что минимальный порог, при котором звук остаётся слышен, зависит от частоты. Этот график получил название абсолютный порог слышимости. В среднем, он имеет участок наибольшей чувствительности в диапазоне от 1 кГц до 5 кГц, хотя с возрастом чувствительность понижается выше 2 кГц.

Кривая абсолютного порога слышимости является частным случаем более общих — кривых одинаковой громкости. Кривые одинаковой громкости — это линии, на которых человек ощущает звук разных частот одинаково громкими. Кривые были впервые получены Флетчером и Мэнсоном (H Fletcher and W A Munson), и опубликованы в труде «Loudness, its definition, measurement and calculation» в J.Acoust. Soc Am.5, 82-108 (1933). Позже более точные измерения выполнили Робинсон и Датсон (D W Robinson and R S Dadson «A re-determination of the equal-loudness relations for pure tones» in Br. J. Appl. Phys. 7, 166—181 ,1956). Полученные кривые значительно различаются, но это не ошибка, а разные условия проведения измерений. Флетчер и Мэнсон в качестве иточника звуковых волн использовали наушники, а Робинсон и Датсон — фронтально расположенный динамик в безэховой комнате.

Измерения Робинсона и Датсона легли в основу стандарта ISO 226 в 1986 г. В 2003 году стандарт ISO 226 был обновлён с учетом данных, собраных из 12 международных студий.

Что мы слышим

Человеческий слух во многом подобен спектральному анализатору, то есть, ухо распознает спектральный состав звуковых волн без анализа фазы волны. В реальности фазовая информация распознается и очень важна для направленного восприятия звука, но эту функцию выполняют ответственные за обработку звука отделы головного мозга. Разница между фазами звуковых волн приходящих на правое и левое ухо позволяет определять направление на источник звука, причем информация о разности фаз имеет первостепенное значение, в отличие от изменения громкости звука воспринимого разными ушами. Эффект фильтрации передаточных функций головы также играет в этом важную роль.

Эффект маскировки

В определённых случаях один звук может быть скрыт другим звуком. Например, разговор на автобусной остановке может быть совершенно невозможен, если подъезжает шумный автобус. Этот эффект называется маскировкой. Говорят, что слабый звук маскируется, если он становится неразличим в присутствии более громкого звука.

Различают несколько видов маскировки:

По времени прихода маскирующего и маскируемого звука:

  • одновре́менное (моноуральное) маскирование
  • вре́менное (неодновременное) маскирование

По типу маскируещего и маскируемого звуков:

  • чистого тона чистым тоном различной частоты
  • чистого тона шумом
  • речи чистыми тонами
  • речи монотонным шумом
  • речи импульсными звуками и т. п.

Одновре́менная маскировка

Любые два звука при одновременном прослушивании оказывают влияние на восприятие относительной громкости между ними. Более громкий звук снижает восприятие более слабого, вплоть до исчезновения его слышимости. Чем ближе частота маскируемого звука к частоте маскирующего, тем сильнее он будет скрываться. Эффект маскировки не одинаков при смещении маскируемого звука ниже или выше по частоте относительно маскирующего. Более низкочастотный звук сильнее маскирует высокочастотный.

Вре́менная маскировка

Это явление похоже на частотную маскировку, но здесь происходит маскировка во времени. При прекращении подачи маскируещего звука маскируемый некоторое время продолжает быть не слышимиым. В обычных условиях эффект от временной маскировки длится значительно меньше. Время маскировки зависит от частоты и амплитуды сигнала и может достигать 100 мс.

В случае, когда маскирующий тон появляется по времени раньше маскируемого, эффект называют пост-маскировкой. Когда маскирующий тон появляется позже маскируемого (возможен и такой случай), эффект называют пре-маскировкой.

Постстимульное утомление

Нередко после воздействия громких звуков высокой интенсивности у человека резко снижается слуховая чувствительность. Восстановление обычных порогов может продолжаться до 16 часов. Этот процесс называется «временный сдвиг порога слуховой чувствительности» или «постстимульное утомление». Сдвиг порога начинает появляться при уровне звукового давления выше 75 дБ и соответственно увеличивается при повышении уровня сигнала. Причем наибольшее влияние на сдвиг порога чувствительности оказывают высокочастотные составляющие сигнала.

Фантомы

Иногда человек может слышать звуки в низкочастотной обасти, хотя в реальности звуков такой частоты не было. Так происходит из-за того, что колебания базилярной мембраны в ухе не являются линейными и в ней могут возникать колебания с разностной частотой между двумя более высокочастотными.

Этот эффект используется в некоторых коммерческих звуковых системах, чтобы расширить область воспроизводимиых низких частот, если невозможно адекватно воспроизвести такие частоты напрямую.

Психоакустика в программном обеспечении

Психоакустические модели слуха позволяют с высоким качеством производить компрессию сигнала с потерей информации (когда восстановленный сигнал не совпадает с исходным), за счет того, что позволяют точно описать, что можно безопасно удалить из исходного сигнала — то есть, без значительного ухудшения качества звука. На первый взгляд может показаться, что вряд ли это позволит обеспечить сильное сжатие сигнала, но программы, использующие психоакустические модели позволяют добиться уменьшения объемов файлов с музыкой в 10—12 раз меньше, чем несжатые с очень незначительной разницей в качестве.

К таким видам компрессии относятся все современные форматы компрессии звука:

  • Ogg Vorbis
  • Musicam (используется для цифрового аудиовещания в некоторых странах)
  • ATRAC используется в формате MiniDisc
Понравилась статья? Поделиться с друзьями: