ЭЛТ монитор – легендарный атрибут персональных компьютеров. Что лучше — ЖК или ЭЛТ-монитор? ЭЛТ с апертурной решеткой из вертикальных линий(Aperture Grill)

Здравствуйте, читатели моего блога, которых заинтересовал ЭЛТ монитор. Я постараюсь, чтобы эта статья была интересна всем, и тем, кто уже не застал их, и тем, у кого данное устройство приятно ассоциируется с первым опытом освоения персонального компьютера.

Сегодня дисплеи ПК представляют собой плоские и тонкие экраны. Но в некоторых малобюджетных организациях можно встретить и массивные кинескопные мониторы. С ними связана целая эпоха в развитии мультимедийных технологий.

Свое официальное название ЭЛТ мониторы получили от русской аббревиатуры термина «электронно-лучевая трубка». Английским аналогом которой является фраза Cathode Ray Tube с соответствующим сокращением CRT.

До того как в домах появились ПК, данный электротехнический прибор был представлен в нашем быту кинескопными телевизорами. Они одно время даже использовались в качестве дисплеев (прикиньте). Но об этом позже, а сейчас давайте немного разберемся в принципе действия ЭЛТ, что позволит нам говорить о таких мониторах на боле серьезном уровне.

Прогресс кинескопных мониторов

История развития электронно-лучевой трубки и ее превращение в ЭЛТ мониторы с достойным разрешением экрана насыщена интересными открытиями и изобретениями. Сначала это были приборы типа осциллограф, экраны радаров РЛС. Потом развитие телевидения подарило нам более удобные для просмотра устройства.

Если говорить конкретно о дисплеях персональных компьютеров, доступных широкому кругу пользователей, то титул первого моника наверное, стоит отдать векторной дисплейной станции IBM 2250. Создали его в 1964 году для коммерческого использования вместе с ЭВМ серии System/360.

Компании IBM принадлежит много разработок по оснащению ПК мониторами, в том числе и проектирование первых видеоадаптеров, ставших прообразом современных мощных и стандартов передаваемого на дисплей изображения.

Так, в 1987 увидел свет адаптер VGA (Video Graphics Array) работающий с разрешением 640×480 и соотношением сторон 4:3. Эти параметры оставались базовыми для большинства выпускаемых мониторов и телевизоров до появления широкоформатных стандартов. В процессе эволюции ЭЛТ мониторов происходило множество изменений в технологии их производства. Но я хочу отдельно остановиться на таких моментах:

Что определяет форма пикселя?

Зная, как работает кинескоп, мы сможем разобраться в особенностях ЭЛТ мониторов. Луч, выпускаемый электронной пушкой, отклоняется индукционным магнитом, чтобы попасть точно в специальные отверстия в маске, расположенной перед экраном.

Они формируют пиксель, а их форма определяет конфигурацию цветных точек и качественные параметры получаемой картинки:

  • Классические круглые отверстия, центры которых расположены по вершинам условного равностороннего треугольника образуют теневую маску. Матрица с равномерно распределенными пикселями обеспечивает максимальное качество при воспроизведении линий. И идеально подходит для офисных конструкторских приложений.
  • Для повышения яркости и контрастности экрана компания Sony использовали апертурную маску. Там вместо точек светились расположенные рядом прямоугольные блоки. Это позволяло максимально использовать площадь экрана (мониторы Sony Trinitron, Mitsubishi Diamondtron).
  • Совместить достоинства этих двух технологий удалось в щелевой решетке, где отверстия имели вид округленных сверху и снизу вытянутых прямоугольников. А блоки пикселей смещались относительно друг друга по вертикали. Такая маска применялась в дисплеях NEC ChromaClear, LG Flatron, Panasonic PureFlat;

Но не только форма пикселя определяла достоинства монитора. Со временем и его размер стал иметь определяющее значение. Он изменялся в пределах от 0,28 до 0,20 мм, и маска с меньшими, более плотными отверстиями позволяла создавать изображения высокого разрешения.

Важной и, увы, заметной для потребителя характеристикой оставалась частота обновления экрана, выражавшаяся в мерцании изображения. Разработчики старались изо всех сил, и постепенно вместо чувствительных 60 Гц динамика смены выводимой картинки достигла 75, 85 и даже 100 Гц. Последний показатель уже позволял работать с максимальным комфортом и глаза почти не уставали.

Работая над улучшением качества продолжалась. Разработчики не забывали и о таком неприятном явлении, как низкочастотное электромагнитное излучение. В таких экранах это излучение направленно электронной пушкой прямо на пользователя. Для устранения этого недостатка использовались всевозможные технологии и применялись разные защитные экраны и защитные покрытия для экранов.

Ужесточались и требования к безопасности мониторов, которые нашли отражение в постоянно обновляемых стандартах: MPR I, MPR II, TCO"92, TCO"95 и TCO"99.

Монитор, которому доверяют профессионалы

Работы над постоянным совершенствованием мультимедийной видео техники и технологий со временем привели к появлению цифрового видео высокой четкости. Чуть позже появились тонкие экраны с подсветкой от экономных светодиодных ламп. Эти дисплеи стали воплощением мечты, ведь они:

  • легче и компактней;
  • отличались низким уровнем энергопотребления;
  • намного безопаснее;
  • не имели мерцания даже на более низких частотах (там мерцание другого рода);
  • имели несколько поддерживаемых разъёмов;

И не специалистам было понятно, что эпоха CRT мониторов завершилась. И казалось, что возврата к этим устройствам уже не будет. Но некоторые профессионалы, знающие все особенности новых и старых экранов, не спешили избавляться от высококачественных ЭЛТ дисплеев. Ведь по некоторым техническим характеристикам они явно выигрывали у своих ЖК конкурентов:

  • отличный угол обзора, позволял читать информацию, располагаясь сбоку от экрана;
  • ЭЛТ технология позволяла без искажений отображать картинку с любым разрешением, даже при использовании масштабирования;
  • понятие неработающих пикселей здесь отсутствует;
  • время инерции остаточного изображения пренебрежительно мало:
  • практически неограниченный диапазон отображаемых оттенков и потрясающая фотореалистичность цветопередачи;

Именно последние два качества оставили кинескопным дисплеям шанс еще раз проявить себя. И они оказались до сих пор востребованы у игроманов и, особенно, у специалистов, работающих в сфере графического дизайна и обработки фотографий.

Вот такая длинная и интересная история у старого, доброго друга, называемого ЭЛТ монитор. И если у вас дома или на предприятии еще остался такой, вы можете снова опробовать его в деле и по-новому оценить его качества.

На этом я прощаюсь с вами, мои дорогие читатели.

УСТРОЙСТВА ОТОБРАЖЕНИЯ ИНФОРМАЦИИ

Мониторы

К устройствам отображения информации относятся прежде все­го мониторы, а также устройства, ориентированные на решение мультимедийных или презентационных задач: устройства форми­рования объемных (стереоскопических) изображений и проекто­ры.

Монитор является важнейшим устройством отображения ком­пьютерной информации. Типы современных мониторов отлича­ются большим разнообразием. По принципу действия все монито­ры для ПК можно разделить на две большие группы:

· на основе электронно-лучевой трубки (ЭЛТ), называемой ки­нескопом;

· плоскопанельные, выполненные в основном на основе жид­ких кристаллов.

Мониторы на основе ЭЛТ

Мониторы на основе ЭЛТ - наиболее распространенные уст­ройства отображения информации. Используемая в этом типе мо­ниторов технология была разработана много лет назад и первона­чально создавалась в качестве специального инструментария для измерения переменного тока, т.е. для осциллографа.

Конструкция ЭЛТ-монитора представляет собой стеклянную трубку, внутри которой находится вакуум. С фронтальной сторо­ны внутренняя часть стекла трубки покрыта люминофором. В ка­честве люминофоров для цветных ЭЛТ используются довольно сложные составы на основе редкоземельных металлов - иттрия, эрбия и др. Люминофор - это вещество, которое испускает свет при бомбардировке его заряженными частицами. Для создания изображения в ЭЛТ-мониторе используется электронная пушка, которая испускает поток электронов сквозь металлическую маску или решетку на внутреннюю поверхность стеклянного экрана монитора, которая покрыта разноцветными люминофорными точ­ками. Электроны попадают на люминофорный слой, после чего энергия электронов преобразуется в свет, т. е. поток электронов заставляет точки люминофора светиться. Эти светящиеся точки люминофора формируют изображение на мониторе. Как правило, в цветном ЭЛТ-мониторе используются три электронные пушки, в отличие от одной пушки, применяемой в монохромных мони­торах.

На пути пучка электронов обычно находятся дополнительные электроды: модулятор, регулирующий интенсивность пучка элек­тронов и связанную с ней яркость изображения; фокусирующий электрод, определяющий размер светового пятна; размещенные на основании ЭЛТ катушки отклоняющей системы, которые из­меняют направление пучка. Любое текстовое или графическое изоб­ражение на экране монитора состоит из множества дискретных точек люминофора, называемых пикселами и представляющих со­бой минимальный элемент изображения-растра.

Формирование растра в мониторе производится с помощью специальных сигналов, поступающих на отклоняющую систему. Под действием этих сигналов производится сканирование луча по поверхности экрана по зигзагообразной траектории от левого верх­него угла до правого нижнего, как показано на рис. 4.1. Ход луча по горизонтали осуществляется сигналом строчной (горизонталь­ной) развертки, а по вертикали - кадровой (вертикальной) раз­вертки. Перевод луча из крайней правой точки строки в крайнюю левую точку следующей строки (обратный ход луча по горизонта­ли) и из крайней правой позиции последней строки экрана в крайнюю левую позицию первой строки (обратный ход луча по вертикали) производится посредством специальных сигналов об­ратного хода. Мониторы такого типа называются растровыми. Элек­тронный луч в этом случае периодически сканирует экран, обра­зуя на нем близко расположенные строки развертки. По мере дви­жения луча по строкам видеосигнал, подаваемый на модулятор, изменяет яркость светового пятна и образует видимое на экране изображение. Разрешающая способность монитора определяется числом элементов изображения, которые он способен воспроизводить по горизонтали и вер­тикали, например, 640x480 или 1024 х 768 пикселов.


В отличие от телевизора, где ви­деосигнал, управляющий яркостью электронного пучка, является ана­логовым, в мониторах ПК исполь­зуются как аналоговые, так и циф­ровые видеосигналы. В связи с этим мониторы для ПК принято разде­лять на аналоговые и цифровые. Пер­выми устройствами отображения информации ПК были цифровые мониторы.

В цифровых мониторах управление осуществляется двоичными сигналами, которые имеют только два значения: логическая 1 и логический 0 («да» и «нет»). Уровню логической единицы соответ­ствует напряжение около 5 В, уровню логического нуля - не бо­лее 0,5 В. Поскольку те же уровни «1» и «0» используются в широ­ко распространенной стандартной серии микросхем на основе транзисторно-транзисторной логики (TTL - Transistor Transistor Logic - транзисторно-транзисторная логика), цифровые монито­ры называют TTL-мониторами.

Первые TTL-мониторы были монохромными, впоследствии появились цветные. В монохромных цифровых мониторах точки на экране могут быть только светлыми или темными, различаясь яр­костью. Электронно-лучевая трубка монохромного монитора име­ет только одну электронную пушку; она меньше цветных ЭЛТ, благодаря чему монохромные мониторы компактнее и легче дру­гих. Кроме того, монохромный монитор работает с более низким анодным напряжением, чем цветной (15 кВ против 21 - 25 кВ), поэтому потребляемая им мощность значительно ниже (30 Вт вме­сто 80 - 90 Вт у цветных).

В кинескопе цветного цифрового монитора содержатся три элек­тронные пушки: для красного (Red), зеленого (Green) и синего (Blue) цветов с раздельным управлением, поэтому его называют RGB-монитором.

Цифровые RGB-мониторы поддерживают и монохромный ре­жим работы с отображением до 16 градаций серого цвета.

Аналоговые мониторы, так же как и цифровые, бывают цвет­ными и монохромными, при этом цветной монитор может рабо­тать в монохромном режиме.

Главная причина перехода к аналоговому видеосигналу со­стоит в ограниченности палитры цветов цифрового монитора. Аналоговый видеосигнал, регулирующий интенсивность пучка электронов, может принимать любое значение в диапазоне от 0 до 0,7 В. Поскольку этих значений бесконечно много, палитра ана­логового монитора неограничена. Однако видеоадаптер может обеспечить только конечное количество градаций уровня видео­сигнала, что в итоге ограничивает палитру всей видеосистемы в целом.

Для понимания принципа формирования растра цветных мони­торов следует представлять механизм цветового зрения. Свет - это электромагнитные колебания в определенном диапазоне длин волн. Человеческий глаз способен различать цвета, соответствую­щие различным областям спектра видимого излучения, который занимает лишь незначительную часть общего спектра электромаг­нитных колебаний в диапазоне длин волн от 0,4 до 0,75 мкм.

Совокупное излучение длин волн всего видимого диапазона воспринимается глазом как белый свет. Глаз человека имеет рецепторы трех типов, ответственные за восприятие цвета и разли­чающиеся своей чувствительностью к электромагнитным колеба­ниям различных длин волн. Одни из них реагируют на фиолетово-синий, другие - на зеленый, третьи - на оранжево-красный цвет. Если на рецепторы свет не попадает, глаз человека воспринимает черный цвет. Если все рецепторы освещаются одинаково, человек видит серый или белый цвет. При освещении объекта часть света отражается от него, а часть поглощается. Плотность цвета опреде­ляется количеством поглощенного объектом света в данном спек­тральном диапазоне. Чем плотнее цветовой слой, тем меньше све­та отражается и, как следствие, более темным получается оттенок цвета (тон).

Физиологические особенности цветового зрения исследовались М. В. Ломоносовым. В основу разработанной им теории цветового зрения положен экспериментально установленный факт, что все цвета могут быть получены путем сложения трех световых потоков с высокой насыщенностью, например, красного, зеленого и си­него, называемых основными или первичными.

Обычно световое излучение возбуждает все рецепторы челове­ческого глаза одновременно. Зрительный аппарат человека анализи­рует свет, определяя в нем относительное содержание различных излучений, а затем в мозгу происходит их синтез в единый цвет.

Благодаря замечательному свойству глаза - трехкомпонент-ности цветного восприятия - человек может различать любой из цветовых оттенков: достаточно информации только о количественном соотношении интенсивностей трех основных цве­тов, поэтому нет необходимости в непосредственной передаче всех цветов. Таким образом, благодаря физиологическим особенностям цветового зрения, значительно сокращается объем информации о цвете и упрощаются многие технологические решения, связан­ные с регистрацией и обработкой цветных изображений.

Еще одним важным свойством цветового зрения является про­странственное усреднение цвета, которое заключает­ся в том, что если на цветном изображении имеются близко рас­положенные цветные детали, то с большого расстояния цвета отдельных деталей неразличимы. Все близко расположенные цвет­ные детали будут выглядеть окрашенными в один цвет. Благодаря этому свойству зрения в электронно-лучевой трубке монитора фор­мируется цвет одного элемента изображения из трех цветов рас­положенных рядом люминофорных зерен.

Указанные свойства цветового зрения использованы при раз­работке принципа действия ЭЛТ цветного монитора. В электрон­но-лучевой трубке цветного монитора расположены три элект­ронные пушки с независимыми схемами управления, а на внут­реннюю поверхность экрана нанесен люминофор трех основных цветов: красного, синего и зеленого.

Рис. 4.2. Схема образования цветов на экране монитора

На рис. 4.2 представлена схема образования цветов на экране монитора. Электронный луч каждой пушки возбуждает точки лю­минофора, и они начинают светиться. Точки светятся по-разному и представляют собой мозаичное изображение с чрезвычайно ма­лыми размерами каждого элемента. Интенсивность свечения каж­дой точки зависит от управляющего сигнала электронной пушки. В человеческом глазу точки с тремя основными цветами пересека­ются и накладываются друг на друга. Изменением соотношения интенсивностей точек трех основных цветов получают требуемый оттенок на экране монитора. Для того чтобы каждая пушка на­правляла поток электронов только на пятна люминофора соот­ветствующего цвета, в каждом цветном кинескопе имеется спе­циальная цветоделительная маска.

В зависимости от расположения электронных пушек и конст­рукции цветоделительной маски (рис. 4.3) различают ЭЛТ четы­рех типов, используемые в современных мониторах:

· ЭЛТ с теневой маской {Shadow Mask) (см. рис. 4.3, а) наибо­лее распространены в большинстве мониторов, производимых LG, Samsung, Viewsonic, Hitachi, Belinea, Panasonic, Daewoo, Nokia;

· ЭЛТ с улучшенной теневой маской (EDP - Enhenced Dot Pitch) (см. рис. 4.3, 6);

· ЭЛТ со щелевой маской (Slot Mask) (см. рис. 4.3, в), в которой люминофорные элементы расположены в вертикальных ячейках, а маска сделана из вертикальных линий. Вертикальные полосы разделены на ячейки, содержащие группы из трех люминофорных элементов трех основных цветов. Этот тип маски применяется фирмами NEC и Panasonic;

· ЭЛТ с апертурной решеткой из вертикальных линий {Aperture Grill) (см. рис. 4.3, г). Вместо точек с люминофорными элемента­ми трех основных цветов апертурная решетка содержит серию нитей, состоящих из люминофорных элементов, выстроенных в виде вертик&тьных полос трех основных цветов. По этой техноло­гии производятся трубки Sony и Mitsubishi.

Конструктивно теневая маска представляет собой металличе­скую пластину из специального материала, инвара, с системой отверстий, соответствующих точкам люминофора, нанесенным на внутреннюю поверхность кинескопа. Температурная стабилизация формы теневой маски при ее бомбардировке электронным пуч­ком обеспечивается малым значением коэффициента линейного расширения инвара. Апертурная решетка образована системой щелей, выполняющих ту же функцию, что и отверстия в теневой маске.

Оба типа трубок (с теневой маской и апертурной решеткой) имеют свои преимущества и области применения. Трубки с тене­вой маской дают более точное и детализированное изображение, поскольку свет проходит через отверстия в маске с четкими кра­ями. Поэтому мониторы с такими ЭЛТ рекомендуется использо­вать при интенсивной и длительной работе с текстами и мелкими элементами графики. Трубки с апертурной решеткой имеют более ажурную маску, они меньше заслоняют экран и позволяют полу­чить более яркое, контрастное изображение в насыщенных цветах. Мониторы с такими трубками хорошо подходят для настольных издательских систем и других приложений, ориентированных на работу с цветными изображениями.

Минимальное расстояние между люминофорными элемента-Ми одинакового цвета в теневых масках называется Dot Pitch (шаг точки) и является индексом качества изображения. Шаг точки обычно измеряется в миллиметрах. Чем меньше значение шага точки, тем выше качество воспроизводимого на мониторе изоб­ражения. Среднее расстояние между точками люминофора назы­вается зерном. У различных моделей мониторов данный пара­метр имеет значение от 0,2 до 0,28 мм. В ЭЛТ с апертурной решет­кой среднее расстояние между полосами называется Strip Pitch (шаг п о л о с ы) и измеряется в миллиметрах. Чем меньше вели­чина шага полосы, тем выше качество изображения на мониторе. Нельзя сравнивать размер шага для трубок разных типов: шаг то­чек (или триад) трубки с теневой маской измеряется по диагона­ли, в то время как шаг апертурной решетки, иначе называемый горизонтальным шагом точек, - по горизонтали. Поэтому при одинаковом шаге точек трубка с теневой маской имеет большую плотность точек, чем трубка с апертурной решеткой. Для приме­ра: 0,25 мм шага точки приблизительно эквивалентно 0,27 мм шага полосы.

Помимо электронно-лучевой трубки монитор содержит управ­ляющую электронику, которая обрабатывает сигнал, поступаю­щий напрямую от видеокарты ПК. Эта электроника должна опти­мизировать усиление сигнала и управлять работой электронных пушек.

Выведенное на экран монитора изображение выглядит стабиль­ным, хотя на самом деле таковым не является. Изображение на экране воспроизводится в результате процесса, в ходе которого свечение люминофорных элементов инициируется электронным лучом, проходящим последовательно по строкам. Этот процесс происходит с высокой скоростью, поэтому кажется, что экран светится постоянно. В сетчатке глаза изображение хранится около 1/20 с. Это означает, что если электронный луч будет двигаться по экрану медленно, глаз воспримет это как отдельную движущуюся яркую точку, но когда луч начинает двигаться с высокой скорос­тью, прочерчивая на экране строку 20 раз в секунду, глаз увидит равномерную линию на экране. Если обеспечить последовательное сканирование лучом экрана по горизонтальным линиям сверху вниз за время меньшее 1/25 с, глаз воспримет равномерно осве­щенный экран с небольшим мерцанием. Движение самого луча происходит настолько быстро, что глаз не в состоянии его заме­тить. Считается, что мерцание становится практически незамет­ным при частоте повторения кадров (проходов луча по всем эле­ментам изображения) примерно 75 раз в секунду.

Высвеченные пикселы экрана должны продолжать светиться в течение времени, которое необходимо электронному лучу, чтобы просканировать весь экран и вернуться снова для активизации данного пиксела при прорисовке уже следующего кадра. Следова­тельно, минимальное время послесвечения должно быть не мень­ше периода смены кадров изображения, т.е. 20 мс.

ЭЛТ-мониторы имеют следующие основные характеристики.

Диагональ экрана монитора - расстояние между левым нижним и правым верхним углом экрана, измеряемое в дюймах. Размер видимой пользователю области экрана обычно несколько мень­ше, в среднем на 1", чем размер трубки. Производители могут указывать в сопровождающей документации два размера диагона­ли, при этом видимый размер обычно обозначается в скобках или с пометкой «Viewable size», но иногда указывается только один размер - размер диагонали трубки. В качестве стандарта для ПК выделились мониторы с диагональю 15", что примерно соответ­ствует 36 - 39 см диагонали видимой области. Для работы в Windows желательно иметь монитор размером, по крайней мере, 17". Для профессиональной работы с настольными издательскими систе­мами (НИС) и системами автоматизированного проектирования (САПР) лучше использовать монитор размером 20" или 21".

Размер зерна экрана определяет расстояние между ближайши­ми отверстиями в цветоделительной маске используемого типа. Расстояние между отверстиями маски измеряется в миллиметрах. Чем меньше расстояние между отверстиями в теневой маске и чем больше этих отверстий, тем выше качество изображения. Все мониторы с зерном более 0,28 мм относятся к категории грубых и стоят дешевле. Лучшие мониторы имеют зерно 0,24 мм, достигая 0,2 мм у самых дорогостоящих моделей.

Разрешающая способность монитора определяется количеством элементов изображения, которые он способен воспроизводить по горизонтали и вертикали. Мониторы с диагональю экрана 19"под­держивают разрешение до 1920 х 14400 и выше.

Тип электронно-лучевой трубки следует принимать во внимание при выборе монитора. Наиболее предпочтительны такие типы кинескопов, как Black Trinitron, Black Matrix или Black Planar. Мо­ниторы этих типов имеют особое люминофорное покрытие.

Потребляемая мощность монитора указывается в его техниче­ских характеристиках. У мониторов 14" потребляемая мощность не должна превышать 60 Вт.

Покрытия экрана необходимы для придания ему антибликовых и антистатических свойств. Антибликовое покрытие позво­ляет наблюдать на экране монитора только изображение, форми­руемое компьютером, и не утомлять глаза наблюдением отражен­ных объектов. Существует несколько способов получения анти­бликовой (не отражающей) поверхности. Самый дешевый из них - протравливание. Оно придает поверхности шероховатость. Однако графика на таком экране выглядит нерезко, качество изображе­ния низкое. Наиболее популярен способ нанесения кварцевого покрытия, рассеивающего падающий свет; этот способ реализо­ван фирмами Hitachi и Samsung. Антистатическое покры­тие необходимо для предотвращения прилипания к экрану пыли вследствие накопления статического электричества.

Защитный экран (фильтр) должен быть непременным атрибу­том ЭЛТ-монитора, поскольку медицинские исследования пока­зали, что излучение, содержащее лучи в широком диапазоне (рент­геновское, инфракрасное и радиоизлучение), а также электро­статические поля, сопровождающие работу монитора, могут весьма отрицательно сказываться на здоровье человека.

По технологии изготовления защитные фильтры бывают: се­точные, пленочные и стеклянные. Фильтры могут крепиться к передней стенке монитора, навешиваться на верхний край, встав­ляться в специальный желобок вокруг экрана или надеваться на монитор.

Сеточные фильтры практически не защищают от электромаг­нитного излучения и статического электричества и несколько ухуд­шают контрастность изображения. Однако эти фильтры неплохо ослабляют блики от внешнего освещения, что немаловажно при длительной работе с компьютером.

Пленочные фильтры также не защищают от статического элект­ричества, но значительно повышают контрастность изображения, практически полностью поглощают ультрафиолетовое излучение и снижают уровень рентгеновского излучения. Поляризационные пленочные фильтры, например фирмы Polaroid, способны пово­рачивать плоскость поляризации отраженного света и подавлять возникновение бликов.

Стеклянные фильтры производятся в нескольких модификаци­ях. Простые стеклянные фильтры снимают статический заряд, ослабляют низкочастотные электромагнитные поля, снижают интенсивность ультрафиолетового излучения и повышают кон­трастность изображения. Стеклянные фильтры категории «полная защита» обладают наибольшей совокупностью защитных свойств: практически не дают бликов, повышают контрастность изобра­жения в полтора-два раза, устраняют электростатическое поле и ультрафиолетовое излучение, значительно снижают низкочастот­ное магнитное (менее 1000 Гц) и рентгеновское излучение. Эти фильтры изготавливаются из специального стекла.

Безопасность монитора для человека регламентируется стан­дартами ТСО: ТСО 92, ТСО 95, ТСО 99, предложенными Швед­ской конфедерацией профсоюзов. ТСО 92, выпущенный в 1992 г., определяет параметры электромагнитного излучения, дает опре­деленную гарантию противопожарной безопасности, обеспечива­ет электрическую безопасность и определяет параметры энерго­сбережения. В 1995 г. стандарт существенно расширили (ТСО 95), включив в него требования к эргономике мониторов. В ТСО 99 требования к мониторам еще более ужесточили. В частности, ста­ли жестче требования к излучениям, эргономике, энергосбере­жению, пожаробезопасности. Присутствуют здесь и экологические требования, которые ограничивают наличие в деталях монитора различных опасных веществ и элементов, например тяжелых ме­таллов.

Срок службы монитора в значительной мере зависит от темпе­ратуры его нагрева при работе. Если монитор очень сильно нагре­вается, можно ожидать, что срок его службы будет невелик. Мо­нитор, корпус которого имеет большое число вентиляционных отверстий, соответственно хорошо охлаждается. Хорошее охлаж­дение препятствует быстрому выходу его из строя.

Устройство ЭЛТ монитора

Изображение создается пучком электронов, падающим на внутреннюю поверхность электронно-лучевой трубки (ЭЛТ или CRT - Cathode Ray Tube), покрытую слоем люминофора (соединение на основе сульфидов цинка и кадмия). Пучок электронов испускается электронной пушкой и управляется электромагнитным полем, создаваемым отклоняющей системой монитора.
Для создания цветного изображения используются три электронные пушки и на поверхность ЭЛТ наносятся три вида люминофора - для создания красного, зеленого и голубого цветов (RGB), которые затем смешиваются. Смешанные с одинаковой интенсивностью, эти цвета дают нам белый цвет.
Перед люминофором ставится специальная <маска> (<решетка>), сужающая пучок и сосредоточивающая его на одном из трех участков люминофора. Экран монитора представляет собой матрицу, состоящую из гнезд-триад определенной структуры и формы, зависящей от конкретной технологии изготовления:

  • трехточечной теневой маски (Dot-trio shadow-mask CRT)
  • щелевой апертурной решетки (Aperture-grille CRT)
  • гнездовой маски (Slot-mask CRT)

ЭЛТ с теневой маской
У ЭЛТ этого типа маска представляет собой металлическую (обычно инваровую) сетку с круглыми отверстиями напротив каждой триады элементов люминофора. Критерием качества (чёткости) изображения является так называемый шаг зерна или точки (dot pitch), который характеризует расстояние в миллиметрах между двумя элементами (точками) люминофора одинакового цвета. Чем меньше это расстояние, тем более качественное изображение сможет воспроизводить монитор. Экран ЭЛТ с теневой маской обычно представляет собой часть сферы достаточно большого диаметра, что может быть заметно по выпуклости экрана мониторов с таким типом ЭЛТ (а может и не быть заметно, если радиус сферы очень большой). К недостаткам ЭЛТ с теневой маской следует отнести то, что большое количество электронов (порядка 70%) задерживается маской и не попадает на люминофорные элементы. Это может привести к нагреву и тепловой деформации маски (что в свою очередь может вызвать искажение цветов на экране). Кроме того, в ЭЛТ такого типа приходится использовать люминофор с большей светоотдачей, что приводит к некоторому ухудшению цветопередачи. Если же говорить о достоинствах ЭЛТ с теневой маской, то следует отметить хорошую чёткость получаемого изображения и их относительную дешевизну.

ЭЛТ с апертурной решёткой
В такой ЭЛТ точечные отверстия в маске (обычно изготавливаемой из фольги) отсутствуют. Вместо них в ней проделаны тонкие вертикальные отверстия от верхнего края маски до нижнего. Таким образом она представляет собой решётку из вертикальных линий. Из-за того что маска изготовлена таким образом она очень чувствительна ко всякому виду вибраций, (которые например могут возникнуть при лёгком постукивание по экрану монитора. Она дополнительно удерживается тонкими горизонтальными проволочками. В мониторах с размером 15 дюймов такая проволочка одна в 17 и 19 две, а в больших три и более. На всех таких моделях заметны тени от этих проволочек особенно на светлом экране. Сначала они могут несколько раздражать, но со временем вы привыкните. Наверное это можно отнести к основным недостаткам ЭЛТ с апертурной решёткой. Экран таких ЭЛТ представляет собой часть цилиндра большого диаметра. В результате он полностью плоский по вертикали и чуть выпуклый по горизонтали. Аналогом шага точки (как для ЭЛТ с теневой маской) здесь является шаг полосы (strip pitch) - минимальное расстояние между двумя полосами люминофора одинакового цвета (измеряется в миллиметрах). Достоинством таких ЭЛТ по сравнению с предыдущим, является более насыщенными цветами и более контрастным изображением, а так же более плоский экран, что достаточно ощутимо снижает количество бликов на нём. К недостаткам можно отнести чуть меньшую чёткость текста на экране.

ЭЛТ с щелевой маской
ЭЛТ с щелевой маской представляет собой компромисс между двумя уже описанными ранее технологиями. Здесь отверстия в маске, соответствующие одной триаде люминофора, выполнены в виде продолговатых вертикальных щелей небольшой длины. Соседние вертикальные ряды таких щелей немного смещены друг относительно друга. Считается, что ЭЛТ с таким типом маски обладают сочетанием всех достоинств, присущих ей. На практике же, разница между изображением на ЭЛТ со щелевой или апертурной решёткой мало заметна. ЭЛТ с щелевой маской обычно имеют названия Flatron, DynaFlat и др

Технические параметры
Технические характеристики мониторов в прайс-листах и на упаковке обычно выражены одной строчкой типа "Samsung 550B/ 15"/ 0,28/ 800х600/ 85Hz", которая расшифровывается так:

  • 15" - размер диагонали экрана в дюймах (38,1 см). Вообще, чем больше монитор, тем он удобнее в работе. Например, при одном и том же разрешении 17-дюймовый монитор воспроизводит изображение так же, как и 15-дюймовый, но сама картинка оказывается физически больше и детали выделяются более ясно. Однако реально часть экрана ЭЛТ по краям скрыта корпусом или лишена люминофора. Поэтому поинтересуйтесь таким параметром, как видимая диагональ. У 17-дюймовых мониторов разных производителей этот параметр может быть от 15,9" и выше.
  • 0,28 - размер точки. Это один из основных показателей качества монитора. Фактически этот параметр характеризует величину каждого пикселя изображения: чем меньше этот размер, тем ближе пиксели друг к другу и тем более детальным оказывается изображение. Более дорогие мониторы имеют размер точки 0,25 или 0,22. Имейте в виду, что при размере точки больше 0,28 теряется значительное количество деталей и на экране появляется зернистость.
  • 800 х 600 - рекомендуемое или максимально возможное разрешение (в примере - рекомендуемое). Это означает, что на экране 800 пикселей в линии по горизонтали и 600 линий по вертикали. При более высоком разрешении (1024х768) на экране вы можете отобразить большее количество различных изображений, данных одновременно или Web-страницу без ее прокрутки. Этот параметр зависит также от свойств видеокарты: некоторые видеокарты не поддерживают высокие разрешения.
  • 85 Hz - максимальная частота обновления экрана (частота регенерации, частота по вертикали, FV). Это значит, что каждый пиксель на экране изменяется 85 раз в секунду. Чем больше раз экран перечеркивается каждую секунду, тем контрастнее и устойчивее изображение. Если вы намерены проводить долгие часы перед монитором, ваши глаза будут меньше уставать, если монитор будет иметь более высокую частоту обновления - не менее 75 Гц. При более высоком разрешении частота обновления экрана может уменьшаться, поэтому нужно следить за сбалансированностью этих параметров. Частота обновления тоже зависит от свойств видеокарты: некоторые видеокарты поддерживают высокие разрешения только при низкой частоте обновления. Экран монитора с матовым (антибликовым) покрытием может быть очень полезен в ярко освещенном офисе. Эту же задачу может решить специальная матовая панель, закрепляемая на монитор.
  • ТСО 99 - стандарт безопасности. Cтандарты устанавливаются Шведским управлением по технической аккредитации (MPR) или европейский стандарт ТСО. Суть рекомендаций TCO состоит в определении минимально приемлемых параметров мониторов, например, поддерживаемых разрешений, интенсивности свечения люминофора, запаса яркости, энергопотребления, шумности и т. д. Соответствие монитора стандарту ТСО подтверждается наклейкой.

Основные достоинства

  • Невысокая цена. ЭЛТ-монитор в 1,5-4 раза дешевле ЖК-дисплея аналогичного класса.
  • Более длительные сроки службы. Наработка на отказ ЭЛТ-монитора в несколько раз выше, чем у ЖК-дисплея . Реальный срок службы ЖК-монитора не превышает четырех лет, в то время как аппараты на ЭЛТ приходится менять по причине скорее морального, чем физического, устаревания. Проблема усугубляется еще и тем, что лампы подсветки у целого ряда моделей ЖК-дисплеев не подлежат замене, а именно они чаще всего и выходят из строя. К тому же качество изображения ЖК-дисплеев со временем деградирует, в частности, появляется посторонний оттенок. У ЭЛТ-экранов нет проблемы "мертвых пикселов", малое количество которых не считается браком. Кроме того, ЖК-матрицы весьма чувствительны к статическому электричеству, толчкам и ударам. Плюс ко всему небольшой вес и малые габариты ЖК-дисплеев обуславливают такие дополнительные риски, как вероятность падения со стола и кража.
  • Малое время отклика, в то время как на ЖК-дисплеях имеет место существенная инерционность изображения. Так что если стоит задача создания анимаций для Web или презентаций, то ЖК-дисплей будет далеко не лучшим выбором.
  • Высокая контрастность. На ЖК-дисплеях только в самых последних моделях начались подвижки в лучшую сторону, а в массовых моделях о чистом черном цвете приходится лишь мечтать.
  • Отсутствие ограничений по углу обзора, в то время как на ЖК-дисплеях они есть, и весьма существенные.
  • Отсутствие дискретности изображения. Особенности формирования изображения на ЭЛТ таковы, что элементы смазываются и поэтому практически не видны невооруженным взглядом. А на ЖК-дисплеях изображение имеет отчетливую дискретность, особенно при нестандартных разрешениях.
  • Отсутствие проблем, связанных с масштабированием изображения. На ЭЛТ-мониторе можно в достаточно широких пределах менять разрешение экрана, в то время как на ЖК-дисплее комфортная работа возможна лишь при одном разрешении.
  • Хорошая цветопередача. На массовых ЖК-дисплеях с матрицами TN+Film и MVA/PVA с этим далеко не все в порядке, и их до сих пор не рекомендуется использовать для работы с цветной полиграфией и видео.

Недостатки

  • Излучение. Электромагнитное и мягкое рентгеновское излучение. Хотя мониторы и считаются одним из наиболее защищённых офисных устройств, на самом деле излучения от них выше крыши. Пусть, экран монитора защищён. А сзади что? А то, что основное излучение от монитора исходит с его задней части. Так что если в офисе есть несколько компьютеров, лучше не сидеть целый день около задней крышки соседского ЭЛТ-монитора , а переставить мебель так, чтобы он хотя бы в стену упирался. Но и экран, хоть и защищён, всё равно изрядно излучает. Я сам сидел за очень многими моделями мониторов - от монохромных, которые шли в комплекте с машинами 1982 года выпуска (на Intel 8086) - до современных ЭЛТ мониторов высшей ценовой категории. За всеми ощущения примерно одинаковы - через какое-то время (чем монитор лучше, тем, естественно, время больше) ощущался определённый дискомфорт. Даже просто находясь рядом с работающим монитором этого не избежать. Ещё надо сказать о <пользе> защитных экранов. Да, они вроде бы защищают пользователя, но они обычно просто <отодвигают> электромагнитное поле. Получается, что перед самым экраном оно снижено, а где-нибудь метра через полтора, серьёзно повышено.
  • Мерцание. Теоретически считается, что после 75 герц человеческий глаз мерцания не видит. Но это, уж поверьте мне, не совсем так. Глаз и при более высокой частоте обновления экрана устаёт от этого, пусть незаметного, мерцания. Опять же, иногда заходишь в офис, там стоит компьютер. Вроде бы новый, монитор нормальный, а как посмотришь на него, так сразу дурно делается - частота обновления герц 65. А те, кто за ним уже несколько месяцев работают, ничего не замечают.
  • Неочевидный фактор - пыль. Дело тут вот в чём. На экран монитора, как и на всё остальное, садится пыль. Экран, пусть даже хорошо защищённый, электризуется и электризует осевшую на него пыль. Из курса физики известно, что одноимённые заряды отталкиваются. И поток пыли начинает потихоньку лететь в сторону ничего не подозревающего пользователя. В результате глаза раздражаются. Иногда очень сильно. Особенно, если человек страдает близорукостью и пытается, сняв очки, поближе присмотреться к изображению.
  • Выгорании люминофора
  • Высокое энергопотребление

История создания ЭЛТ - мониторов

ЭЛТ-мониторы – это мониторы, формирующие изображение с помощью электронно-лучевой трубки, из которой под действием электростатического поля исходит поток электронов, бомбардирующий внутреннюю поверхность экрана монитора, покрытую люминофором. Люминофор под воздействием электронов начинает светиться, формируя изображение на экране монитора.

Началом истории создания ЭЛТ-мониторов можно считать 1855 году. В то время немецким стеклодувом Генрихом Гейслером было сделано, на первый взгляд, не относящееся к монитором изобретение. Он создал вакуумный стеклянный сосуд.

Через несколько лет после этого изобретения другой немецкий ученый, физик и математик, друг Генриха Гейслера, - Юлиус Плюккер впаял в вакуумный сосуд два электрода и подал на них напряжение. В результате возникшей разности потенциала, от одного электрода к другому пошел ток, стремящийся выровнять разность потенциалов. Под действием тока в вакуумной трубке возникло свечение, характер которого зависел от глубины вакуума.

Свечение вызывалось столкновением атомов, оставшихся в сосуде газов, с электронами, идущими от электрода с большим потенциалом к электрону с меньшим потенциалом. Так как электрон с большим потенциалом называется катодом, а с меньшим потенциалом – анодом, то поток электронов, излучаемый катодом получил название – катодные лучи.

Итак, в 1859 году Юлиусом Плюккером было совершено знаковое открытие, позволившее в дальнейшем создать ЭЛТ-мониторы.

Исследования Юлиуса Плюккера продолжил Уильям Крукс, открывший, что катодные лучи исходят перпендикулярно к катоду и распространяются прямолинейно, но могут отклоняться под действием магнитного поля. Для доказательства этого явления Уильям Крукс в 1879 году создал газоразрядную трубку, названную трубкой Крукса. Опыты с газоразрядными трубками также показали, что, попадая на некоторые вещества, катодные лучи вызывают их свечение. Впоследствии такие вещества были названы катодолюминофорами.


Первое изображение с помощью электронно-лучевой трубки было сделано только через 18 лет после многочисленных опытов и исследований катодных лучей. И это открытие принадлежит Карлу Фердинанду Брауну. Именно он разработал принцип формирования изображения с помощью электронно-лучевой трубки, впоследствии названной трубкой Брауна.

В первой модели трубки Брауну не удалось получить полный вакуум, и использовался холодной катод, требующий сильного внешнего электрического поля для испускания электронов. Все это приводило к необходимости использовать большого ускоряющего напряжения (100 киловольт). К тому же магнитное отклонение луча осуществлялось только по вертикали. Отклонение по горизонтали (изменение сигнала по времени) осуществлялось с помощью вращающегося зеркала.

Свое изобретение Браун использовал, как осциллограф, для изучения электрических колебаний. Снаружи, вокруг узкой части стеклянной трубки между диафрагмой и экраном, располагался электромагнит. Исследуемый ток подводили к катушке электромагнита, в результате возникало электромагнитное поле, отклоняющее катодный луч. Катодный луч высвечивал на флуоресцирующем экране линию, соответствующую изменению магнитного поля под действием тока. Высвеченная линия позволяла определить изменение тока, подводимого к электромагниту.

Светящаяся линия проектировалась на внешний экран с помощью зеркала. Поворачивая зеркало, можно было наблюдать изменение сигнала по времени – двумерную кривую линию, форма которой зависела от амплитуды изменения подводимого к электромагниту тока и скорости поворота зеркала.

Фердинанд Браун не патентовал свое изобретение и демонстрировал его на всевозможных выставках и семинарах. В результате работу оценило множество ученых и вложило свой вклад в развитие и совершенствование электронно-лучевых трубок.

Так уже в 1899 году И. Ценнек, ассистент Брауна, добавил второе магнитное поле, перпендикулярное первому, и получил возможность отклонения катодного луча по вертикали.

В 1903 году Артур Венельт поместил в трубку цилиндрический электрод с отрицательным, относительно катода, потенциалом. Изменение потенциала позволяло менять интенсивность катодных лучей и тем самым яркость свечения люминофора.

В 1906 году М. Дикман и Г. Глаге доработали трубку Брауна и ввели возможность управления током, подаваемым на электромагниты. В результате они смогли отображать на экране не просто изменение тока от времени, а конкретные фигуры. В том же году они получили патент на использование трубки Брауна для передачи изображений букв и штрихов.

Электронно-лучевые трубки оказались незаменимыми в различных приборах, таких как осциллографы, позволяющих исследовать быстропротекающие процессы. Но на этом область их применения не ограничивалась. Возможность формирования изображения с помощью электронно-лучевых трубок заинтересовала множество ученых во всем мире, и вскоре стали появляться все более и более совершенные устройства.

Так в 1907 году русский физик Борис Львович Розинг разработал прибор на основе трубки Брауна, способный воспроизводить движущееся изображение, и получил патент на свою разработку в 1908-1910 гг. в России, Англии и Германии. Он же 9 мая 1911 года, на заседании Русского технического общества, продемонстрировал передачу, прием и воспроизведение на экране электронно-лучевой трубки телевизионных изображений - простых геометрических фигур.

В дальнейшем подобные приборы стали называться кинескопами, от греч. kinesis - движение и skopeo - смотреть.

Первые кинескопы были векторные. В таких кинескопах использовался один пучок катодных лучей, перемещающийся от одной точки к другой, оставляя на экране светящиеся линии, которые постепенно затухали. Затухание происходило очень быстро и обычно не превышало 0,1 секунды.

Для того, чтобы изображение оставалось на экране, его приходилось с частотой несколько десятков герц перерисовывать. Все это приводило к жестким ограничениям по количеству отображаемой на экране информации. Если требовалось отображение сложного объекта, то изображение могло начинать мерцать. Происходило это из-за того, что к концу прорисовки сложного объекта та часть его, которая выводилась первой, уже начинала гаснуть.

Так как векторные кинескопы не могли отображать сложные графические объекты, им быстро нашлась замена в виде растровых кинескопов. Но до сих пор в различных областях науки и техники используются векторные мониторы, в основном в виде измерительных приборов, таких как осциллографы, так как позволяют получить высокое разрешение, частоту регенерации и значительно проще устроены, а, следовательно, и дешевле, чем матричные кинескопы. Также именно векторные кинескопы стали первыми использоваться в качестве мониторов для ЭВМ.

В растровых кинескопах траектория перемещения луча по экрану всегда постоянна и не зависит от выводимых изображений. Луч пробегает по строкам экрана сверху вниз и с помощью модуляции яркости луча формирует изображение. В этом случае время вывода изображения не зависит от его сложности, но возникают ограничения по разрешению изображения, а именно по количеству и длине строк, пробегающих лучом, а также времени изменения модуляции яркости луча, определяющего сколько различных точек может быть выведено за время прохождения лучом одной строки.

Но, несмотря на эти ограничения, первые электронные телевизоры использовали именно растровые кинескопы, а вот в ЭВМ растровые мониторы стали использоваться значительно позже векторных, так как требовали значительного объема памяти для регенерации изображения и обладали маленькой разрешающей способностью.

Развитие электронно-лучевых трубок шло семимильными шагами, сильно этому способствовало и развитие телевидения. Так в 1935 году в Германии началось первое регулярное телевещание для электронных телевизоров. Регулярное телевещание для телевизоров с оптико-механической разверткой началось гораздо раньше, с 1927 года в Великобритании. В 1936 году электронное телевещание стало регулярным и в Англии, Италии, Франции, а затем инициативу подхватили и другие страны.

В скором времени ЭЛТ-телевизоры стали выпускаться серийно. Так уже в 1939 году был представлен первый электронный телевизор для массового производства. Эта модель, RCS TT-5, была разработана в США в научно-исследовательской лаборатории RCA, возглавляемой Владимиром Зворыкиным, русским эмигрантом, и представляла собой большой деревянный ящик с экраном с диагональю 5 дюймов.

Первый электронный телевизор в России ТК-1 был выпущен в конце 1938 года Ленинградским заводом имени Козицкого по американской документации (в Америке подобные телевизоры выпускались с 1934 года). Производство телевизоров было крайне трудоемким и сложным процессом, множество радиодеталей поставлялось из заграницы, и всего было выпущено около 6000 телевизоров, большинство из которых использовались в качестве экспериментальных установок в научно-исследовательских лабораториях.

Первый Российский серийный электронный телевизор был создан на ленинградском заводе «Радист» в конце 1939 года и назывался ""17ТН-1"". Он представлял собой громоздкую напольную тумбу с небольшим круглым экраном 17 дюймов. Производство телевизоров было все еще дорогостоящим и сложным процессом, поэтому до начала войны было выпущено всего 2000 экземпляров.

Первый массово-серийный и доступный простым потребителям в России стал телевизор КВН-49-1, разработанный в 1947 году в Ленинградском НИИ телевидения. Серийный выпуск телевизоров этой марки начался в 1949 году. Кстати, название КВН произошло от первых букв разработчиков телевизора: Кенигсона В.К, Варшавского Н.М и Николаевского И.А, ну а 49, как вы догадались, от года начала серийного выпуска.

В 1950 году произошел очередной прорыв в технологии. В США был разработан масочный цветной кинескоп с тремя электронными пушками.

Экран кинескопа был покрыт тремя типами люминофора, светящегося под действием электронных лучей красным, зеленым и синим цветом. Каждая точка изображения формировалась тремя участками люминофора разного типа, в совокупности воспринимающаяся глазом, как единая цветная точка.

В основании кинескопа располагалось три электронно-лучевые пушки. Если смотреть сверху на них, то они представляли собой вершины равностороннего треугольника. Лучи, излучаемые этими пушками, синхронно пробегали все строки развертки, также как это делал единственный луч в одноцветных кинескопах. Но каждый луч попадал на свой тип люминофора, и, модулируя интенсивность лучей, на экране можно было отобразить цветные точки.

Для того чтобы лучи, излучаемые электронными пушками, попадали на свой участок из трех типов люминофора и не засвечивали соседние участки, использовалась теневая решетка, состоящая из множества отверстий, через которые проходили лучи. Благодаря теневой решетке, повышалась контрастность изображения, так как лучи, переходя от одного участка экрана к другому, не задевали люминофоры чужого типа. Но, в свою очередь, уменьшалось количество проходящих электронов, что уменьшало яркость картинки.

В первых кинескопах в качестве маски использовался тонкий стальной лист с круглыми отверстиями. Такая маска назвалась теневой, она позволяла максимально точно позиционировать электронный лучи, но круглые отверстия задерживали достаточно большую часть электронов. Впоследствии отверстия стали делать коническими, что позволило увеличить их пропускную способность. Теневая маска обеспечивала высокую точность изображения, но меньшую яркость (по сравнению с щелевой и аппретурной решеткой). Такие маски чаще всего применялись в мониторах.

Впоследствии в телевизионных кинескопах электронные пушки стали располагать планарно, параллельно земле, что упрощало настройки кинескопа и позиционирование лучей. Для таких кинескопов в маске делались овальные отверстия, и называлась она – щелевая решетка. Щелевая решетка обеспечивает более насыщенные цвета, по сравнению с теневой маской, но менее насыщенные, чем у апертурной решетки. Но в то же время получаемое изображение более четкое, чем у апетурной решетки. Однако щелевая решетка склона к муарам. В результате основная область применения таких кинескопов – телевидение.

Впоследствии такие производители, как Sony или Mitsubishi в качестве маски стали использовать апертурную решетку – множество вертикально натянутых тонких проволок. При этом электронные лучи не ограничивались, как в двух предыдущих типах масок, а фокусировались в нужных точках экрана, за счет чего прозрачность апертурной решетки была в разы выше и достигала 80%, а соответственно была выше яркость и насыщенность изображения.

Первый цветной телевизор с электронно-лучевой трубкой был выпущен в США в марте 1954 года компанией Westinghouse и назывался H840CK15, и стоил 1295 долларов. Спустя несколько недель, в США был выпущен еще один цветной телевизор, но уже компанией RCA - RCA CT-100. Он был снабжен 15-ти дюймовым цветным кинескопом и стоил около 1000 долларов. В то время, к примеру, новый, шикарный автомобиль стоил 2000 долларов, так что цветные телевизоры рассчитывались не на массовое потребление, а скорее как дорогая игрушка для ограниченного круга элиты. Вскоре цветное телевидение перешло в массы, и во всех странах появилось огромное количество различных моделей цветных телевизоров. На сайте www.earlytelevision.org можно посмотреть фотографии и описания большинства первых цветных и монохромных телевизоров и мониторов.

Технология отображения на ЭЛТ-телевизорах совершенствовалась год от года, и, когда настала эра ЭВМ, электронно-лучевые трубки стали использоваться для отображения результатов их работы. Конечно, произошло это не сразу. Первые ЭВМ в качестве устройств вывода использовали, в основном, различные печатающие устройства или записывали результат вычислений на магнитную ленту. Но уже тогда многие ЭВМ оснащались электронно-лучевыми трубками, но использовались они не как мониторы, а как осциллографы, контролирующие исправность электрических цепей вычислительных машин или даже, как запоминающие устройства .

Ярким примером служит ЭВМ SSEM (Manchester Small-Scale Experimental Machine) – манчестерская малая экспериментальная машина, заработавшая в июне 1948 года.

В ней использовалось целых три электронно-лучевые трубки. Однако только одна из них отображала информацию, две других представляли собой оперативную память, позволившую избавиться от громоздких, трудоемких и опасных ртутных линий задержки.

На прообраз монитора в SSEM выводилась информация, содержавшаяся в двух других электронно-лучевых трубках.

ЭЛТ-мониторы для вывода информации использовались и в ЭВМ CSIRAC (Council for Scientific and Industrial Research Automatic Computer) - Автоматическом Компьютере Совета по Научным и Промышленным Исследованиям. CSIRAC был разработан в Австралии и заработал в ноябре 1949 года.

В этой ЭВМ вывод результатов работы осуществлялся все еще на телетайп, но для контроля процесса работы использовался ЭЛТ-монитор, отображавший состояние регистров ЭВМ, используемых при вычислении.

Еще один случай использования электронно-лучевой трубки для вывода результатов работы ЭВМ зафиксирован в 1950 году. Произошло это в Англии в Кембриджском университете. И использовалась она в электронно-вычислительной машине EDSAC (Electronic Delay Storage Automatic Computer).

Естественно, мониторы, используемые в EDSAC, SSEM, CSIRAC и в других ЭВМ того времени, сильно отличались от современных ЭЛТ-мониторов и больше походили на осциллографы. Но все же это были первые попытки вывода информации не на принтер, а на электронный монитор, в конечном итоге приведшие к созданию современного ЭЛТ-монитора.

Начиная с 50-х годов, практически все ЭВМ в том или ином виде использовали ЭЛТ-трубки. Наиболее показательной в этом плане является ЭВМ Whirlwind (Вихрь), созданная в 1951 году в США. Использовалась она в станции американской ПВО «SAGE 1» и предназначалась для обработки в режиме реального времени непрерывно поступающего потока данных о состояния воздушной обстановки и фиксации информации о вторжении самолетов в воздушное пространство США.

Естественно, просто обработать данные было недостаточно. Было необходимо в режиме реального времени отображать полученные данные, а именно положение обнаруженных воздушных объектов. Сделать это с помощью распространенного в то время телетайпа было невозможно. Во-первых, потребовалось бы огромное количество бумаги, а, во-вторых, распечатанная таким образом информация была ненаглядной и требующей значительных усилий и времени для принятия решений, которого у военных, в случае вторжения вражеской авиации, не было.

Поэтому было принято решение, в качестве основного устройства отображения, использовать ЭЛТ-монитор, позволяющий наглядно, а главное в режиме реального времени, отображать всю информацию, требующуюся для работы системы ПВО.

Демонстрация работы системы ПВО SAGE состоялась 20 апреля 1951 года. Данные с радара, установленного в заливе Кейп-Код, передавались в командный центр, где обрабатывались в ЭВМ Whirlwind, а затем отображались на экранах ЭЛТ-мониторов в виде движущихся точек, соответствующих положению обнаруженных самолетов.

В конечном итоге, в США была создана целая сеть из 23-х командных пунктов ПВО SAGE, обеспечивающих защиту воздушных границ США долгие годы.

В шестидесятых годах мониторами оснащались уже практически все ЭВМ, и их стали производить серийно. Для разгрузки центрального процессора ЭЛТ-мониторы оснащали своими вычислительными ресурсами, и они стали называться дисплейными станциями.

Первой такой дисплейной станцией была оснащена ЭВМ «DEC PDP-1». Дисплейная станция была монохромной, имела ЭЛТ-дисплей, диаметром 16 дюймов с разрешением 1024 х 1024 точки. Под разрешением в векторных мониторах понимается количество точек, которые могут быть заданы, в качестве граничных координат отображаемых отрезков.

Вскоре появился и первая коммерческая дисплейная станция IBM 2250. IBM 2250 была разработана в 1964 году и использовалась в ЭВМ серии System/360.

IBM 2250 имела дисплей размером 12х12 дюймов с разрешением 1024х1024 точки и поддерживала частоту обновления экрана в 40 Гц. Отображаемые символы, цифры и буквы состояли из отдельных отрезков и были максимально упрощены для увеличения производительности.

В памяти дисплейной станции были заложены специальные подпрограммы, отвечающие за форматирование символов на экране. Таким образом, центральному процессору ЭВМ требовалось только указать, какой символ и где вывести на экране. Расчет отображаемого символа и управление катодным лучом производилось уже в самой дисплейной станции, что сильно разгружало ЭВМ.

Описанные выше дисплейные станции, как и их прототипы, были векторными. Между тем популярность ЭВМ набирала рост. Многие предприятия использовали ЭВМ. Но в шестидесятых годах ЭВМ представляли собой дорогостоящие устройства, и обеспечить всех специалистов своей ЭВМ было невозможно. В результате, начали развиваться терминальные системы, в которых ЭВМ отдавалась в распоряжение сразу нескольким пользователям. Доступ к вычислительным ресурсам осуществлялись через специальные терминалы, оборудованные монитором, устройством ввода-вывода, и подключенные к удаленной ЭВМ.

Одной из первых терминальных систем, оборудованных терминалами с ЭЛТ-мониторами, была система IBM 2848. Разработана эта система была в 1964 году и состояла из одного устройства контроля IBM 2848, представляющего собой прообраз современных видеоадаптеров, к которому могло подключаться до 8 терминалов IBM 2260.

Терминалы системы были оснащены ЭЛТ-мониторами, способными отображать только текст с разрешением 12 строк по 80 символов в каждой строке. Всего отображалось 64 различных знака (26 букв, 10 цифр, 25 специальных символов и 3 контрольных символа). Причем текст отображался не на всей области ЭЛТ, а только на небольшом участке, размером 4 на 9 дюймов.

В основном эта терминальная система использовалась для работы с ЭВМ серии IBM system/360. Одна из таких систем функционировала с 1969 по 1972 года в компьютерном центре в Колумбии.

В 1972 был создан один из первых цветных терминалов - IBM 3279. Первоначально терминал IBM 3279 поддерживал 4 цвета: красный, зеленый, голубой и белый, и работал только в текстовом режиме. Причем при стандартных настройках вводимые символы окрашивались в зеленый или красный цвет, а выводимые - белым или голубым.

Позже были выпущены модификации, способные работать и в графическом режиме с поддержкой уже семи цветов. Примером такого терминала может служить IBM 3279G.

Но настоящий бум развития ЭЛТ- мониторов начался с появления персональных компьютеров. Например, ЭВМ IBM 5100, разработанная в 1975 году, имела встроенный пятидюймовый ЭЛТ- монитор, способный отображать 16 строк по 64 символа в каждой. Видеоадаптера, как такового, в ЭВМ не было, а изображение выводилось с помощью контроллера дисплея, имеющего прямой доступ к оперативной памяти по адресам 0x0200..0x05ff, где содержался текст для отображения.

Подобная технология отображения замедляла работу ЭВМ, так как для формирования изображения использовался центральный процессор. Также негативно сказывалось на быстродействие частое обращение к ОЗУ для считывания области, содержащей информацию для отображения.

Поэтому вскоре для отображения данных на мониторе были разработаны специальные видеоадаптеры, значительно разгружающие центральный процессор и ОЗУ, так как видеоадаптеры оснащались встроенным ОЗУ и не требовали постоянного обращения к основному ОЗУ для регенерации изображения.

Первый такой видеоадаптер был разработан в 1981 году, назывался он Monochrome Display Adapter (MDA) и использовался в IBM PC.

Как следует из названия, адаптер был монохромный, работал только в текстовом режиме с разрешением 80х25 символов (720х350 точек).

Стандартный видеоадаптер MDA основывался на чипе Motorola 6845 и содержал 4 КБ видеопамяти. Частота развёртки составляла 50 Гц.

Цвет выводимого текста определялся типом люминофора, используемого в кинескопе монитора. Обычно использовался люминофор P1 – зеленый цвет, люминофор P3 – светло-коричневый, или люминофор P4 – белый. В первых мониторах, выпускаемых для адаптера MDA, использовался зеленый люминофор, примером таких мониторы может быть IBM 5151.


Практически одновременно, в 1981 году, был выпущен цветной видеоадаптер CGA - Color Graphics Adapter. Видеоадаптер поддерживал максимальное разрешение 640х200 и палитру, состоящую из 16 цветов. Работал видеоадаптер в двух режимах – текстовом и графическом. В текстовом режиме можно было использовать все 16 цветов и разрешение, либо 40 на 25 символов, либо 80 на 25 символов.

В графическом режиме при разрешении 320 на 200 пикселей можно было использовать 4 цвета из стандартных политр: пурпурный, сине-зелёный, белый и черный или красный, зелёный, коричневый/жёлтый и черный. При разрешении 640х200 отображение было монохромным (черно-белым).

Дополнительные настройки позволяли формировать свои палитры из доступных 16 цветов и, например, делать отображение при разрешении 640х200 не черно-белым, а черно-зеленым и так далее.

В момент выпуска видеоадаптера не было мониторов, способных использовать все его возможности. Имеющиеся монохромные мониторы или NTSC-совместимый телевизор могли подключаться к видеоадаптеру только через композитный разъем. Но при этом качество отображения было ужасным, особенно при высоком разрешении (640х200).

Монитор, полностью поддерживающий все функции видеоадаптера, был выпущен компанией IBM только в 1983 году – это был 12-дюймовый монитор IBM 5153. Позже различными производителями было выпущено множество аналогов этого монитора.

В 1984 году компанией Hercules Computer Technology был выпущен еще один видеоадаптер - Hercules Graphics Card (Hercules) - графический адаптер Геркулес. Он поддерживал не только текстовый режим, как MDA, с разрешением 80х25 символов, но и графический, с разрешением 720х348. Hercules все еще оставался монохромным, но поддержка более высокого, чем CGA разрешения, совместимость с широко распространенными мониторами стандарта MDA, такими как IBM 5151, сделали его популярной альтернативой видеоадаптера CGA.

Однако не видеоадаптеры CGA, не видеоадаптеры Hercules не удовлетворяли растущим потребностям пользователей ЭВМ. Поэтому в том же 1984 году появился видеоадаптер Enhanced Graphics Adapter (EGA), что в переводе означает - усовершенствованный графический адаптер.

Видеоадаптер EGA значительно превосходил по техническим возможностям своих предшественников. Он мог формировать графическое изображение, используя 16 цветов из 64 цветной палитры при разрешении 640х350 точек.

Но для полноценного использования нового видеоадаптера потребовались мониторы нового стандарта, позволяющие работать с цветным изображением высокого разрешения (естественно высокого для того времени).

Чтобы не оказаться в невыгодной позиции на рынке, разработчики нового видеоадаптера предусмотрели возможность поддержки различных цветовых режимов и разрешений, повторяющих возможности предыдущих стандартов и возможность вывода изображения на мониторы предыдущих стандартов. Естественно, при этом страдало качество изображения, либо уменьшалась разрешающая способность, либо количество цветов, но при этом открывались дополнительные возможности для пользователей, которые могли модернизировать свои системы постепенно, не затрачивая сразу большие суммы.

Перед подключением монитора на плате необходимо было настроить конфигурацию видеоадаптера для работы с выбранным стандартом монитора и режима формирования изображения (графическое, тестовое, разрешение картинки и т.д.). Для этого предназначались шесть переключателей, обычно, располагающихся на задней стороне видеоадаптера. В частности, поддерживались следующие стандарты мониторов:

  • монохромные мониторы стандарта MDA, такие как IBM 5151;
  • цветные мониторы стандарта CGA, такие как IBM 5153;
  • цветные мониторы стандарта EGA, такие как IBM 5154.

Стоит отметить, что большинство видеоадаптеров EGA выпускались всего лишь с 64 кб памяти, что было недостаточно для отображения 16-цветного изображения с разрешением 640x350 точек, а позволяло использовать только 4 цвета или 16 цветов, но при разрешении 640x200.

Естественно, были видеоадаптеры с 128 кб памяти и даже с 256 кб, но стоили они значительно дороже, и далеко не все могли их себе позволить, впрочем, как и новые EGA-мониторы. Так что на практике в большинстве случаев возможности нового видеоадаптера использовались не полностью, но, несмотря на это, он пользовался большой популярностью, и замена ему вышла только спустя три года. Это был новый стандарт видеоадаптеров MCGA.

MultiColor Graphics Adapter (MCGA) ? многоцветный графический адаптер, выпущенный в 1987 году. Он значительно превосходил все существующие на тот момент видеоадаптеры по количеству цветов в палитре, составляющим 262144.

Но объем видеопамяти был маленький, всего 64 Кб, что сильно снижало его возможности, но это положительно сказалась на его цене.

Единовременно адаптер мог отображать 256 цветов, выбранных из палитры, но из-за ограниченной видеопамяти разрешение экрана при этом составляло всего 320х200. При монохромном отображении или в текстовом режиме разрешение было несколько выше.

Основные характеристики графического адаптера следующие:

Объем памяти: 64 Кб;

Тестовое разрешение: 640x400 (80х50 символов при размере символа 8х8 или 80х25 символов при размере символа 8х16);

Количество цветов: 256, выбираемых из палитры 262144 цветов;

Разрешение экрана при отображении 256 цветов: 320x200;

Разрешение экрана в монохромном режиме: 640?480;

Частота строчной развертки: 31,5 KГц.

Впервые этот адаптер использовался в ЭВМ IBM PS/2 Model 30, представленной второго апреля 1987 года. Причем он представлял собой не отдельную плату, а встраивался в материнскую плату ЭВМ. Позже MCGA использовался в IBM PS/2 Model 25 тоже в виде интегрированной в материнскую плату системы.

Адаптер не успел завоевать широкую популярность, так как очень быстро был вытеснен сильно превосходящим его графическим адаптером VGA. И после снятия с производства ЭВМ IBM PS/2 25 и 30 перестал выпускаться и адаптер MCGA.

Графический адаптер VGA (Video Graphics Array) был разработан компанией IBM в 1987 и впервые был использован в ЭВМ IBM PS/2 Model 50. Вскоре VGA стал общепризнанным стандартом мониторов и видеоадаптеров.

Основное разрешение, поддерживаемое адаптером VGA, было 640х480 пикселей, при этом одновременно отображалось 16 цветов, выбираемых из палитры 262144 оттенка. Новое разрешение позволяло более качественно отображать картинку и имело отношение сторон 4:3, которое надолго стало стандартом, и только в последние годы было вытеснено широкоформатным отображением, как в мониторах, так и в телевизорах, которые в принципе с каждым днем все меньше и меньше отличаются от мониторов.

Видеоадаптер VGA поддерживал и другие расширения:

  • 320x200 пикселей, 4 цвета;
  • 320x200 пикселей, 16 цветов;
  • 320x200 пикселей, 256 цветов;
  • 640x200 пикселей, 2 цвета;
  • 640x200 пикселей, 16 цветов;
  • 640x350 пикселей, монохромный;
  • 640x350 пикселей, 16 цветов;
  • 640x480 пикселей, 2 цвета;
  • 640x480 пикселей, 16 цветов,

и это не считая текстового режима отображения.

В отличие от предыдущих графических адаптеров, в VGA использовался аналоговый сигнал для передачи отображаемой информации монитору. Использование аналогового сигнала позволяло уменьшить количество проводов в кабеле, так как передавать требовалось только сигналы трех основных цветов и сигналы синхронизации, и отдельный канал выделялся для передачи служебной информации. Также новый аналоговый интерфейс связи между графическим адаптером и монитором позволял в дальнейшем увеличивать количество единовременно отображаемых цветов без изменения интерфейса связи с монитором и собственно без изменения самого монитора.

Но для работы с графическими адаптерами VGA были нужны новые многочастотные аналоговые мониторы. Эти мониторы могли работать с различной частотой кадров, что позволяло им поддерживать режимы с различной разрешающей способностью и практически неограниченное число цветов, и полностью обеспечивать весь потенциал графических адаптеров VGA.

Со временем графические интерфейсы операционных систем прочно вошли в нашу жизнь, появлялось огромное число видеоигр и различных приложений, требующих высокого разрешения и способности отображение более чем 256 цветов. Видеоадаптер VGA не был в состоянии удовлетворить возросшие потребности пользователей, в результате многие фирмы стали выпускать собственные расширенные версии видеоадаптера VGA, впоследствии получивших общее название Super VGA или SVGA. Со временем возможности видеоадаптеров SVGA росли. Стали поддерживаться режимы: High Color и True Color, в которых одновременно отображалось 32768 и более чем 16,7 миллионов различных цветов. Поддерживались разрешения: 800х600, 1024х760, 1280х1024, 1600х1200 и т.д.

Параллельно, с развитием видеоадаптеров SVGA, совершенствовались и мониторы. Увеличивалась частота развертки, поддерживаемые разрешения, качество цветопередачи и т.д.

Казалось, что ЭЛТ-мониторы прочно и надолго вошли в нашу жизнь, но буквально за несколько лет про них практически забыли, и сейчас мало у кого можно их встретить. Всему виной стали ЖК-мониторы, незаметно, в тени славы ЭЛТ-мониторов, достигнувшие вершин качества отображения, сравнимых с качеством отображения и цветопередачи ЭЛТ-мониторов. Но при этом ЖК-мониторы были более компактные и эргономичные. Естественно у них были свои недостатки, но они все менее и менее сказываются на их качестве. Но более подробно об истории ЖК-мониторов и их устройствах поговорим в одной из следующих статей.



Сегодня самый распространенный тип мониторов - это CRT (Cathode Ray Tube) мониторы. Как видно из названия, в основе всех подобных мониторов лежит катодно-лучевая трубка, но это дословный перевод, технически правильно говорить электронно-лучевая трубка (ЭЛТ). Иногда CRT расшифровывается и как Cathode Ray Terminal, что соответствует уже не самой трубке, а устройству, на ней основанному.
Используемая в этом типе мониторов технология была разработана немецким ученым Фердинандом Брауном в 1897г. и первоначально создавалась в качестве специального инструмента для измерения переменного тока, то есть для осциллографа.

Рассмотрим конструкцию ЭЛТ-мониторов:

Самым важным элементом монитора является кинескоп, называемый также электронно- лучевой трубкой (основные конструкционные узлы кинескопа показаны на рис 1.1). Кинескоп состоит из герметичной стеклянной трубки, внутри которой находится вакуум, то есть весь воздух удален. Один из концов трубки узкий и длинный - это горловина, а другой - широкий и достаточно плоский - это экран. С фронтальной стороны внутренняя часть стекла трубки покрыта люминофором (luminophor). В качестве люминофоров для цветных ЭЛТ используются довольно сложные составы на основе редкоземельных металлов - иттрия, эрбия и т.п. Люминофор - это вещество, которое испускает свет при бомбардировке его заряженными частицами. Заметим, что иногда люминофор называют фосфором, но это не верно, т.к. люминофор, используемый в покрытии ЭЛТ, ничего не имеет общего с фосфором. Более того, фосфор "светится" в результате взаимодействия с кислородом воздуха при окислении до P 2 O 5 и "свечение" происходит небольшое количество времени (кстати, белый фосфор - сильный яд).

Для создания изображения в ЭЛТ-мониторе используется электронная пушка, откуда под действием сильного электростатического поля исходит поток электронов. Сквозь металлическую маску или решетку они попадают на внутреннюю поверхность стеклянного экрана монитора, которая покрыта разноцветными люминофорными точками.
Поток электронов (луч) может отклоняться в вертикальной и горизонтальной плоскости, что обеспечивает последовательное попадание его на все поле экрана. Отклонение луча происходит посредством отклоняющей системы [см. рис 1.2]. Отклоняющие системы подразделяются на седловидно-тороидальные и седловидные. Последние предпочтительнее, поскольку создают пониженный уровень излучения.

Отклоняющая система состоит из нескольких катушек индуктивности, размещенных у горловины кинескопа. С помощью переменного магнитного поля две катушки создают отклонение пучка электронов в горизонтальной плоскости, а другие две - в вертикальной.
Изменение магнитного поля возникает под действием переменного тока, протекающего через катушки и изменяющегося по определенному закону (это, как правило, пилообразное изменение напряжения во времени), при этом катушки придают лучу нужное направление. Путь электронного луча на экране схематично показан на рис. 1.3. Сплошные линии - это активный ход луча, пунктир - обратный.

Частота перехода на новую линию называется частотой горизонтальной (или строчной) развертки. Частота перехода из нижнего правого угла в левый верхний называется частотой вертикальной (или кадровой) развертки. Амплитуда импульсов перенапряжения на катушках строчной развертки возрастает с частотой строк, поэтому этот узел оказывается одним из самых напряженных мест конструкции и одним из главных источников помех в широком диапазоне частот. Мощность, потребляемая узлами строчной развертки, также является одним из серьезных факторов учитываемых при проектировании мониторов.
После отклоняющей системы поток электронов на пути к фронтальной части трубки проходит через модулятор интенсивности и ускоряющую систему, работающие по принципу разности потенциалов. В результате электроны приобретают большую энергию [см. формулу 1.1], часть из которой расходуется на свечение люминофора.

где E-энергия, m-масса, v-скорость.

Электроны попадают на люминофорный слой, после чего энергия электронов преобразуется в свет, т.е. поток электронов заставляет точки люминофора светиться. Эти светящиеся точки люминофора формируют изображение, которое вы видите на вашем мониторе. Как правило, в цветном CRT мониторе используется три электронные пушки, в отличие от одной пушки, применяемой в монохромных мониторах, которые сейчас практически не производятся.
Известно, что глаза человека реагируют на основные цвета: красный (Red), зеленый (Green) и синий (Blue) и на их комбинации, которые создают бесконечное число цветов. Люминофорный слой, покрывающий фронтальную часть электронно-лучевой трубки, состоит из очень маленьких элементов (настолько маленьких, что человеческий глаз не всегда может различить их). Эти люминофорные элементы воспроизводят основные цвета, фактически имеются три типа разноцветных частиц, чьи цвета соответствуют основным цветам RGB (отсюда и название группы из люминофорных элементов - триады).
Люминофор начинает светиться, как было сказано выше, под воздействием ускоренных электронов, которые создаются тремя электронными пушками. Каждая из трех пушек соответствует одному из основных цветов и посылает пучок электронов на различные люминофорные частицы, чье свечение основными цветами с различной интенсивностью комбинируется и в результате формируется изображение с требуемым цветом. Например, если активировать красную, зеленую и синюю люминофорные частицы, то их комбинация сформирует белый цвет.
Для управления электронно-лучевой трубкой необходима и управляющая электроника, качество которой во многом определяет и качество монитора. Кстати, именно различие в качестве управляющей электроники, создаваемой разными производителями, является одним из критериев определяющих разницу между мониторами с одинаковой электронно-лучевой трубкой.
Итак, каждая пушка излучает электронный луч (или поток, или пучок), который влияет на люминофорные элементы разного цвета (зеленого, красного или синего). Понятно, что электронный луч, предназначенный для красных люминофорных элементов, не должен влиять на люминофор зеленого или синего цвета. Чтобы добиться такого действия используется специальная маска, чья структура зависит от типа кинескопов от разных производителей, обеспечивающая дискретность (растровость) изображения. ЭЛТ можно разбить на два класса - трехлучевые с дельтаобразным расположением электронных пушек и с планарным расположением электронных пушек. В этих трубках применяются щелевые и теневые маски, хотя правильнее сказать, что они все теневые. При этом трубки с планарным расположением электронных пушек еще называют кинескопами с самосведением лучей, так как воздействие магнитного поля Земли на три планарно расположенных луча практически одинаково и при изменении положения трубки относительно поля Земли не требуется производить дополнительные регулировки.

Теневая маска

Теневая маска (shadow mask) - это самый распространенный тип масок, она применяется со времени изобретения первых цветных кинескопов. Поверхность у кинескопов с теневой маской обычно сферической формы (выпуклая).Это сделано для того, чтобы электронный луч в центре экрана и по краям имел одинаковую толщину.

Теневая маска состоит из металлической пластины с круглыми отверстиями, которые занимают примерно 25% площади [см. рис. 1.5, 1.6]. Находится маска перед стеклянной трубкой с люминофорным слоем. Как правило, большинство современных теневых масок изготавливают из инвара. Инвар (InVar) - магнитный сплав железа с никелем . width="185" height="175" border="2" hspace="10">Этот материал имеет предельно низкий коэффициент теплового расширения, поэтому, несмотря на то, что электронные лучи нагревают маску, она не оказывает отрицательного влияния на чистоту цвета изображения. Отверстия в металлической сетке работают как прицел (хотя и не точный), именно этим обеспечивается то, что электронный луч попадает только на требуемые люминофорные элементы и только в определенных областях. Теневая маска создает решетку с однородными точками (еще называемыми триады), где каждая такая точка состоит из трех люминофорных элементов основных цветов - зеленного, красного и синего - которые светятся с различной интенсивностью под воздействием лучей из электронных пушек. Изменением тока каждого из трех электронных лучей можно добиться произвольного цвета элемента изображения, образуемого триадой точек.
Одним из "слабых" мест мониторов с теневой маской является ее термическая деформация [см. рис. 1.7]. Часть лучей от электронно-лучевой пушки попадает на теневую маску, вследствие чего происходит нагрев и последующая деформация теневой маски. Происходящее смещение отверстий теневой маски приводит к возникновению эффекта пестроты экрана (смещения цветов RGB). Существенное влияние на качество монитора оказывает материал теневой маски. Предпочтительным материалом маски является инвар.

Недостатки теневой маски хорошо известны: во-первых, это малое соотношение пропускаемых и задерживаемых маской электронов (только около 20-30% проходит через маску), width="250" height="211" border="2" hspace="10">что требует применения люминофоров с большой светоотдачей, а это в свою очередь ухудшает монохромность свечения, уменьшая диапазон цветопередачи, а во-вторых, обеспечить точное совпадение трех не лежащих в одной плоскости лучей при отклонении их на большие углы довольно трудно.
Теневая маска применяется в большинстве современных мониторов - Hitachi, Panasonic, Samsung, Daewoo, LG, Nokia, ViewSonic.
Минимальное расстояние между люминофорными элементами одинакового цвета в соседних строках называется шагом точек (dot pitch) и является индексом качества изображения [см. рис. 1.8]. Шаг точек обычно измеряется в миллиметрах (мм). Чем меньше значение шага точек, тем выше качество воспроизводимого на мониторе изображения. Расстояние между двумя соседними точками по горизонтали равно шагу тачек, умноженному на 0,866.

Апертурная решетка

Есть еще один вид трубок, в которых используется "Aperture Grille" (апертурная решетка). Эти трубки стали известны под именем Trinitron и впервые были представлены на рынке компанией Sony в 1982 году. В трубках с апертурной решеткой применяется оригинальная технология, где имеется три лучевые пушки, три катода и три модулятора, но при этом имеется одна общая фокусировка [см. рис. 1.9].

Апертурная решетка - это тип маски, используемый разными производителями в своих технологиях для производства кинескопов, носящих разные названия, но одинаковые по сути, например, технология Trinitron от Sony, DiamondTron от Mitsubishi и SonicTron от ViewSonic. Это решение не включает в себя металлическую решетку с отверстиями, как в случае с теневой маской, а имеет решетку из вертикальных линий [см. рис. 1.10]. Вместо точек с люминофорными элементами трех основных цветов, апертурная решетка содержит серию нитей, состоящих из люминофорных элементов выстроенных в виде вертикальных полос трех основных цветов. Такая система обеспечивает высокую контрастность изображения и хорошую насыщенность цветов, что вместе обеспечивает высокое качество мониторов с трубками на основе этой технологии. Маска, применяемая в трубках фирмы Sony (Mitsubishi, ViewSonic), представляет собой тонкую фольгу, на которой процарапаны тонкие вертикальные линии. Она держится на горизонтальной (одной в 15", двух в 17", трех и более в 21") проволочке, тень от которой видна на экране. Эта проволочка применяется для гашения колебаний и называется damper wire. Ее хорошо видно, особенно при светлом фоне изображения на мониторе. Некоторым пользователям эти линии принципиально не нравятся, другие же наоборот довольны и используют их в качестве горизонтальной линейки.
Минимальное расстояние между полосами люминофора одинакового цвета называется шагом полос (strip pitch) и измеряется в миллиметрах (мм) [см. рис. 1.10]. Чем меньше значение шага полос, тем выше качество изображения на мониторе. При апертурной решетке имеет смысл только горизонтальный размер точки. Так как вертикальный определяется фокусировкой электронного луча и отклоняющей системой.
Апертурная решетка используется в мониторах от ViewSonic, Radius, Nokia, LG, CTX, Mitsubishi, во всех мониторах от SONY.

Щелевая маска

Щелевая маска (slot mask) - это технология широко применяется компанией NEC под именем "CromaClear". Это решение на практике представляет собой комбинацию теневой маски и апертурной решетки. В данном случае люминофорные элементы расположены в вертикальных эллиптических ячейках, а маска сделана из вертикальных линий [см. рис. 1.11]. Фактически вертикальные полосы разделены на эллиптические ячейки, которые содержат группы из трех люминофорных элементов трех основных цветов.
Щелевая маска используется, помимо мониторов от NEC (где ячейки эллиптические), в мониторах Panasonic с трубкой PureFlat (ранее называвшейся PanaFlat). Заметим, что нельзя напрямую сравнивать размер шага для трубок разных типов: шаг точек (или триад) трубки с теневой маской измеряется по диагонали, в то время как шаг апертурной решетки, иначе называемый горизонтальным шагом точек, - по горизонтали. Поэтому при одинаковом шаге точек трубка с теневой маской имеет большую плотность точек, чем трубка с апертурной решеткой. Для примера, шаг полос 0.25 мм приблизительно эквивалентен шагу точек, равному 0.27 мм.

Также в 1997г. компанией Hitachi - крупнейшим проектировщиком и изготовителем ЭЛТ - была разработана EDP - новейшая технология теневой маски. В типичной теневой маске триады размещены более или менее равносторонне, создавая треугольные группы, которые распределены равномерно поперек внутренней поверхности трубки [см. рис. 1.12]. Компания Hitachi уменьшила расстояние между элементами триады по горизонтали, тем самым, создав триады, более близкие по форме к равнобедренному треугольнику. Для избежания промежутков между триадами сами точки были удлинены, и представляют собой скорее овалы, чем круг.

Оба типа масок - теневая маска и апертурная решетка - имеют свои преимущества и своих сторонников. Для офисных приложений, текстовых редакторов и электронных таблиц больше подходят кинескопы с теневой маской, обеспечивающие очень высокую четкость и достаточный контраст изображения. Для работы с пакетами растровой и векторной графики традиционно рекомендуются трубки с апертурной решеткой, которым свойственны превосходная яркость и контрастность изображения. Кроме того, рабочая поверхность этих кинескопов представляет собой сегмент цилиндра с большим радиусом кривизны по горизонтали (в отличие от ЭЛТ с теневой маской, имеющих сферическую поверхность экрана), что существенно (до 50%) снижает интенсивность бликов на экране.
Электронно-лучевые трубки производятся в основном в Японии. Для некоторых серий мониторов Acer, Daewoo, LG Electronics, Philips, Samsung и ViewSonic трубки изготавливает концерн Hitachi. В изделиях ADI и Daewoo устанавливаются трубки Toshiba. Компании Apple, Compaq, IBM, MAG и Nokia применяют ЭЛТ Sony Trinitron. Наконец, Mitsubishi поставляет ЭЛТ для фирм CTX, Iiyama и Wyse, а трубки Panasonic (Matsushita) можно встретить в мониторах CTX, Philips и ViewSonic. Зачастую изготовители трубок бывают перегружены заказами, поэтому в производство мониторов одной и той же серии вносят вклад различные поставщики.

Современные ЭЛТ

FD Trinitron (Sony)

В настоящее время все выпускаемые Sony ЭЛТ-мониторы имеют плоскую внешнюю поверхность экрана (даже модели с диагональю 15"). Технология, которую Sony использует в своих мониторах, разрабатывается компанией уже более тридцати лет, и не будет преувеличением сказать, что она приобрела всемирную известность. Все началось в 1968г., когда было изобретена технология Trinitron. В 1982г. Sony выпустила первый компьютерный дисплей, в котором была применена ЭЛТ Trinitron. В 1998г. компания представила первый монитор с плоской поверхностью экрана, выполненный по технологии FD Trinitron.

ЭЛТ Trinitron, которые всем хорошо известны по бытовым телевизорам, отличались от обычных тем, что имели не сферическую поверхность экрана, а цилиндрическую. Остановимся на интересных моментах, отличающих технологию FD Trinitron.

Прежде всего это высокое разрешение. Чтобы достигнуть высокой разрешающей способности, необходимо наличие трех составляющих - очень тонкой экранной маски, минимального диаметра электронного луча и безошибочного позиционирования этого луча на всей поверхности экрана. Такая задача таит в себе немало трудностей. Например, уменьшение диаметра электронного луча вызывает снижение яркости изображения. Чтобы компенсировать потери в яркости, нужно увеличить мощность электронного луча, но это ведет к сокращению срока службы люминофорного покрытия и котода самой электронной пушки, который служит источником электронов.

В FD Trinitron применена конструкция электронной пушки под названием SAGIC (Small Aperture G1 with Impregnated Cathode). В ней используется привычный бариевый катод, но обогащенный вольфрамом, что позволяет продлить срок службы ЭЛТ. Кроме того, диаметр фильтрующего отверстия в первом элементе решетки электронной пушки G1 уменьшен до 0,3 мм по сравнению с обычными 0,4 мм, что позволяет получать на выходе более тонкий электронный луч.

В качестве экраннной маски Sony использует апертурную решетку с шагом 0,22-0,28мм (Этот показатель меняется не только зависимости от модели монитора. В самом мониторе шаг маски может быть различным в центре и на периферийных участках). Применение апертурной решетки вместо теневой маски позволяет увеличить количество электронов, достигающих поверхности люминофорного покрытия, а это дает более чистую, лучше сфокусированную и яркую картинку. Кроме того, в электронной пушке применены специальные системы фокусировки: DQL (Dynamic Quadropole Lens), MALS (Multi Astigmatism Lens System) и EFEAL (Extended Field Elliptical Aperture Lens). Они позволяют получать тонкое и отлично сфокусированное пятно электронного луча в любом месте экрана.

Все мониторы с ЭЛТ FD Trinitron имеют специальное многослойное покрытие (от 4 до 6 слоев), которое выполняет несколько функций. Во-первых оно позволяет получать истинные цвета на поверхности экрана за счет снижения отраженного света. Кроме того, благодаря дополнительному специальному черному слою антибликового покрытия (Hi-Con™) повышается контрастность, значительно улучшена передача серых оттенков. В дополнение ко всему это уникальное для FD Trinitron черное покрытие "впитывает" как прямой, так и отраженный свет, что повышает контрастность изображения.

Flatron (LG Electronics)

Основное отличие ЭЛТ Flatron от кинескопов других производителей состоит в том, что в ней для формирования изображения используется абсолютно плоская поверхность экрана как снаружи, так и внутри. Это позволило увеличить угол обзора и, как следствие, видимую область изображения. В мониторах LG Flatron используется щелевая маска, позволяющая воспроизводить изображение с высоким разрешением (шаг маски у 17" мониторов LG Flatron 775FT и 795FT Plus - 0,24 мм). Кроме того, в ЭЛТ LG Flatron толщина маски снижена, что повышает качество формируемого на экране электронного пятна.

В LG Flatron используется электронная пушка специальной конструкциии - Hi-Lb-MQ Gun. В обычных пушках по краям экрана электронное пятно имеет овальную форму. Это ведет к появлению муара и снижению горизонтального разрешения. Примененная же в Hi-Lb-MQ Gun система фокусировки позволяет добиваться практически идеальной формы электронного пятна по всей поверхности экрана. В конструкцию решетки электронной пушки также внесены изменения - добавлен дополнительный фильтрующий элемент G3.

Еще одной примечательной особенностью Flatron является антибликовое и антистатическое покрытие W-ARAS, оно значительно снижает количество отраженного света и вместе с тем позволяет добиться самого низкого коэфффициента светопропускания экрана (38% против 40-52% у конкурентов).

ErgoFlat (Hitachi)

В ЭЛТ ErgoFlat используется теневая маска с очень маленьким шагом (так, у модели Hitachi CM771 шаг маски равен 0,22 мм по горизонтали и 0,14 мм по вертикали).

Понравилась статья? Поделиться с друзьями: