Конечный продукт работы трансмембранных белков. Организация и функции мембранных белков

Биологические мембраны , находящиеся на границе клетки и внеклеточного пространства, а также на границе мембранных органелл клетки (митохондрий, эндоплазматической сети, комплекса Гольджи , лизосом, пероксисом, ядра, мембранных пузырьков) и цитозоля существенно важны для функционирования как клетки в целом, так и её органелл. Клеточные мембраны имеют принципиально сходную молекулярную организацию. В этой главе биологические мембраны рассмотрены преимущественно на примере плазматической мембраны (плазмолеммы), отграничивающей клетку от внеклеточной среды.

Любая биологическая мембрана (рис. 2–1) состоит из фосфолипидов (~50%) и белков (до 40%). В меньших количествах в состав мембраны входят другие липиды, холестерол и углеводы.

Рис. 2–1. состоит из двойного слоя фосфолипидов , гидрофильные части которых (головки) направлены к поверхности мембраны, а гидрофобные части (хвосты, стабилизирующие мембрану в виде бислоя) внутрь мембраны. И - интегральные белки погружены в мембрану. Т - трансмембранные белки пронизывают всю толщу мембраны. П - периферические белки расположены либо на наружной, либо на внутренней поверхности мембраны.

Фосфолипиды . Молекула фосфолипида состоит из полярной (гидрофильной) части (головка) и аполярного (гидрофобного) двойного углеводородного хвоста. В водной фазе молекулы фосфолипидов автоматически агрегируют хвост к хвосту, формируя каркас биологической мембраны (рис. 2–1 и 2–2) в виде двойного слоя (бислой). Таким образом, в мембране хвосты фосфолипидов (жирные кислоты) направлены внутрь бислоя, а содержащие фосфатные группировки головки обращены кнаружи.

Арахидоновая кислота. Из мембранных фосфолипидов освобождается арахидоновая кислота - предшественник Пг, тромбоксанов, лейкотриенов и ряда других биологически активных веществ с множеством функций (медиаторы воспаления, вазоактивные факторы, вторые посредники и др.).

Липосомы - искусственно приготовленные из фосфолипидов мембранные пузырьки диаметром от 25 нм до 1 мкм. Липосомы используют как модели биологических мембран, а также для введения внутрь клетки различных веществ (например, генов, ЛС); последнее обстоятельство основано на том, что мембранные структуры (в т.ч. и липосомы) легко сливаются (за счёт фосфолипидного бислоя).

Белки биологических мембран подразделяют на интегральные (в том числе трансмембранные) и периферические (рис. 2–1 и 2–2).

Интегральные мембранные белки (глобулярные) встроены в липидный бислой. Их гидрофильные аминокислоты взаимодействуют с фосфатными группами фосфолипидов, а гидрофобные аминокислоты - с цепями жирных кислот. К интегральным мембранным белкам относятся белки адгезии, некоторые рецепторные белки (мембранные рецепторы).

Трансмембранный белок - молекула белка, проходящая через всю толщу мембраны и выступающая из неё как на наружной, так и на внутренней поверхности. К трансмембранным белкам относятся поры, ионные каналы, переносчики, насосы, некоторые рецепторные белки.

Поры и каналы - трансмембранные пути, по которым между цитозолем и межклеточным пространством (и в обратном направлении) перемещаются вода, ионы и молекулы метаболитов.

Переносчики осуществляют трансмембранное перемещение конкретных молекул (в том числе в сочетании с переносом ионов или молекул другого типа).

Насосы перемещают ионы против их концентрационного и энергетического градиентов (электрохимический градиент) при помощи энергии, освобождаемой при гидролизе АТФ.

Периферические мембранные белки (фибриллярные и глобулярные) находятся на одной из поверхностей клеточной мембраны (наружной или внутренней) и нековалентно связаны с интегральными мембранными белками.

Примеры периферических мембранных белков, связанных с наружной поверхностью мембраны - рецепторные белки и белки адгезии .

Примеры периферических мембранных белков, связанных с внутренней поверхностью мембраны, - белки цитоскелета, белки системы вторых посредников, ферменты и другие белки.

Латеральная подвижность. Интегральные белки могут перераспределяться в мембране в результате взаимодействия с периферическими белками, элементами цитоскелета, молекулами в мембране соседней клетки и компонентами внеклеточного матрикса.

Углеводы (преимущественно олигосахариды) входят в состав гликопротеинов и гликолипидов мембраны, составляя 2–10% её массы (рис. 2–2). С углеводами клеточной поверхности взаимодействуют лектины. Цепи олигосахаридов выступают на наружной поверхности мембран клетки и формируют поверхностную оболочку - гликокаликс .

Гликокаликс имеет толщину около 50 нм и состоит из олигосахаридов, ковалентно связанных с гликопротеинами и гликолипидами плазмолеммы. Функции гликокаликса: межклеточное узнавание, межклеточные взаимодействия, пристеночное пищеварение (гликокаликс, покрывающий микроворсинки каёмчатых клеток эпителия кишечника, содержит пептидазы и гликозидазы, завершающие расщепление белков и углеводов).

Проницаемость мембраны

Мембранный бислой разделяет две водные фазы. Так, плазмати­ческая мембрана отделяет межклеточную (интерстициальную) жид­кость от цитозоля, а мембраны лизосом, пероксисом, митохондрий и других мембранных внутриклеточных органелл их содержимое от цитозоля. Биологическая мембрана - полупроницаемый барьер .

Полупроницаемая мембрана. Биологическую мембрану определяют как полупроницаемую, т.е. барьер, не проницаемый для воды, но проницаемый для растворённых в ней веществ (ионы и молекулы).

Полупроницаемые тканевые структуры. К полупроницаемым тка­невым структурам относят также стенку кровеносных капилля­ров и различные барьеры (например, фильтрационный барьер почечных телец, аэрогематический барьер респираторного отде­ла лёгкого, гематоэнцефалический барьер и многие другие, хотя в состав таких барьеров - помимо биологических мембран (плазмолемма) - входят и немембранные компоненты. Проницаемость таких тканевых структур рассмотрена в разделе «Трансклеточная проницаемость» главы 4 .

Физико-химические параметры межклеточной жидкости и цито­золя существенно различны (см. табл. 2-1), также различны пара­метры каждого мембранного внутриклеточного органоида и цитозоля. Наружная и внутренняя поверхности биологической мембра­ны полярны и гидрофильны, но неполярная сердцевина мембраны гидрофобна. Поэтому неполярные вещества могут проникать через липидный бислой. В то же время именно гидрофобный характер сердцевины биологической мембраны определяет принципиальную невозможность непосредственного проникновения через мембрану полярных веществ.

Неполярные вещества (например, водонерастворимые холестерол и его производные) свободно проникают через биологические мембраны. В частности, именно по этой причине рецепторы сте­роидных гормонов расположены внутри клетки.

Полярные вещества (например, ионы Na+, K+ C1- , Са2+; различ­ные небольшие, но полярные метаболиты, а также сахара, нукле-отиды, макромолекулы белка и нуклеиновых кислот) сами по себе не проникают через биологические мембраны. Именно поэтому рецепторы полярных молекул (например, пептидных гормонов) встроены в плазматическую мембрану, а передачу гормонального сигнала к другим клеточным компартментам осуществляют вто­рые посредники.

Избирательная проницаемость - проницаемость биологической мембраны по отношению к конкретным химическим веществам) –– важна для поддержания клеточного гомеостаза. оптимального со­держания в клетке ионов, воды, метаболитов и макромолекул. Пе­ремещение конкретных веществ через биологическую мембрану называют трансмембранным транспортом (чрезмембранный транспорт).

Липидам в составе мембран отводят, в первую очередь, структурные свойства - они создают бислой, или матрикс, в котором размещаются активные компоненты мембраны - белки. Именно белки придают разнообразным мембранам уникальность и обеспечивают специфические свойства. Многочисленные мембранные белки выполняют следующие основные функции: обусловливают перенос веществ через мембраны (транспортные функции), осуществляют катализ, обеспечивают процессы фото- и окислительного фосфорилирования, репликацию ДНК, трансляцию и модификацию белков, рецепцию сигналов и передачу нервного импульса и др.

Принято делить мембранные белки на 2 группы: интегральные (внутренние) и периферические (наружные). Критерием такого разделения служит степень прочности связывания белка с мембраной и, соответственно, степень жесткости обработки, необходимой для извлечения белка из мембраны. Так, периферические белки могут высвобождаться в раствор уже при промывке мембран буферными смесями с низкой ионной силой, низкими значениями рН в присутствии хелатирующих веществ, например этилендиаминотетраацетата (ЭДТА), связывающих двухвалентные катионы. Периферические белки выделяются из мембран при таких мягких условиях, поскольку связаны с головками липидов или с другими белками мембраны при помощи слабых электростатических взаимодействий, либо с помощью гидро-фобных взаимодействий - с хвостами липидов. Наоборот, интегральные белки представляют собой амфифильные молекулы, имеют на своей поверхности большие гидрофобные участки и располагаются внутри мембраны, поэтому для их извлечения требуется разрушить бислой. Для этих целей наиболее часто используют детергенты или органические растворители. Способы прикрепления белков к мембране довольно разнообразны (рис. 4.8).

Транспортные белки . Липидный бислой является непроницаемым барьером для большинства водорастворимых молекул и ионов, и их перенос через биомембраны зависит от деятельности транспортных белков. Можно выделить два основных типа этих белков: каналы (поры) и переносчики . Каналы представляют собой туннели, пересекающие мембрану, в которых места связывания транспортируемых веществ доступны на обеих поверхностях мембраны одновременно. Каналы в процессе транспорта веществ не претерпевают каких-либо конформационных изменений, их конформация меняется лишь при открывании и закрывании. Переносчики, наоборот, в процессе переноса веществ через мембрану изменяют свою конформацию. Причем в каждый конкретный момент времени место связывания переносимого вещества в переносчике доступно только на одной поверхности мембраны.

Каналы, в свою очередь, можно разделить на две основные группы: потенциалзависимые и регулируемые химически. Примером потенциалзависимого канала является Na + -канал, его работа регулируется изменением напряжения электрического поля. Иными словами, эти каналы открываются и закрываются в ответ на изменение трансмембранного потенциала . Химически регулируемые каналы

открываются и закрываются в ответ на связывание специфических химических агентов. Например, никотиновый ацетилхолиновый рецептор при связывании с ним нейромедиатора переходит в открытую конформацию и пропускает одновалентные катионы (подрадел 4.7 данной главы). Термины «пора» и «канал» обычно взаимозаменяемы, но под порой чаще понимают неселективные структуры, различающие вещества главным образом по размеру и пропускающие все достаточно малые молекулы. Под каналами чаще понимают ионные каналы. Скорость транспорта через открытый канал достигает 10 6 - 10 8 ионов в секунду.

Переносчики также можно разделить на 2 группы: пассивные и активные. С помощью пассивных переносчиков через мембрану осуществляется транспорт одного типа веществ. Пассивные переносчики задействованы в облегченной диффузии и лишь увеличивают поток вещества, осуществляемый по электрохимическому градиенту (например, перенос глюкозы через мембраны эритроцитов). Активные переносчики транспортируют вещества через мембрану с затратами энергии. Эти транспортные белки накапливают вещества на одной из сторон мембраны, перенося их против электрохимического градиента. Скорость транспорта с помощью переносчиков в очень сильной степени зависит от их типа и колеблется от 30 до 10 5 с -1 . Часто для обозначения отдельных переносчиков используют термины «пермеаза», «транслоказа», которые можно считать синонимами термина «переносчик».

Ферментные функции мембранных белков . В клеточных мембранах функционирует большое количество разнообразных ферментов. Одни из них локализуются в мембране, находя там подходящую среду для превращения гидрофобных соединений, другие благодаря участию мембран располагаются в них в строгой очередности, катализируя последовательные стадии жизненно важных процессов, третьи нуждаются в содействии липидов для стабилизации своей конформации и поддержания активности. В биомембранах обнаружены ферменты - представители всех известных классов. Они могут пронизывать мембрану насквозь, присутствовать в ней в растворенной форме или, являясь периферическими белками, связываться с мембранными поверхностями в ответ на какой-либо сигнал. Можно выделить следующие характерные типы мембранных ферментов:

1) трансмембранные ферменты, катализирующие сопряженные реакции на противоположных сторонах мембраны. Эти ферменты имеют, как правило, несколько активных центров, размещающихся на противоположных сторонах мембраны. Типичными представителями таких ферментов являются компоненты дыхательной цепи или фотосинтетические редокс-центры, катализирующие окислительно-восстановительные процессы, связанные с транспортом электронов и созданием ионных градиентов на мембране;

2) трансмембранные ферменты, участвующие в транспорте веществ. Транспортные белки, сопрягающие перенос вещества с гидролизом АТР, например, обладают каталитической функцией;

3) ферменты, катализирующие превращение связанных с мембраной субстратов. Эти ферменты участвуют в метаболизме мембранных компонентов: фосфолипидов, гликолипидов, стероидов и др.

4) ферменты, участвующие в превращениях водорастворимых субстратов. С помощью мембран, чаще всего в прикрепленном к ним состоянии, ферменты могут концентрироваться в тех областях мембран, где содержание их субстратов наибольшее. Например, ферменты, гидролизующие белки и крахмал, прикрепляются к мембранам микроворсинок кишечника, что способствует увеличению скорости расщепления этих субстратов.

Белки цитоскелета . Цитоскелет представляет собой сложную сеть белковых волокон разного типа и присутствует только в эукариотических клетках. Цитоскелет обеспечивает механическую опору для плазматической мембраны, может определять форму клетки, а также местоположение органелл и их перемещение при митозе. С участием цитоскелета осуществляются также такие важные для клетки процессы, как эндо- и экзоцитоз, фагоцитоз, амебоидное движение. Таким образом, цитоскелет является динамическим каркасом клетки и определяет ее механику.

Цитоскелет формируется из волокон трех типов:

1) микрофиламенты (диаметр ~ 6 нм). Представляют собой нитевидные органеллы - полимеры глобулярного белка актина и других связанных с ним белков;

2) промежуточные филаменты (диаметр 8- 10 нм). Сформированы кератинами и родственными им белками;

3) микротрубочки (диаметр ~ 23 нм) - длинные трубчатые структуры.

Состоят из глобулярного белка тубулина, субъединицы которого формируют полый цилиндр. Длина микротрубочек может достигать нескольких микрометров в цитоплазме клеток и нескольких миллиметров в аксонах нервов.

Перечисленные структуры цитоскелета пронизывают клетку в разных направлениях и тесно связываются с мембраной, прикрепляясь к ней в некоторых точках. Эти участки мембраны играют важную роль в межклеточных контактах, с их помощью клетки могут прикрепляться к субстрату. Они же играют важную роль в трансмембранном распределении липидов и белков в мембранах.

Если основная роль липидов в составе мемб­ран заключается в стабилизации бислоя, то бел­ки отвечают за функциональную активность мембран. Одни из них обеспечивают транспорт определённых молекул и ионов, другие явля­ются ферментами, третьи участвуют в связыва­нии цитоскелета с внеклеточным матриксом или служат рецепторами для гормонов, медиаторов,

эйкозаноидов, липопротеинов, оксида азота (N0). На долю белков приходится от 30 до 70% массы мембран. Белки определяют особеннос­ти функционирования каждой мембраны.

Особенности строения

и локализации белков в мембранах

Мембранные белки, контактирующие с гид­рофобной частью липидного бислоя, должны быть амфифильными. Те участки белка, кото­рые взаимодействуют с углеводородными цепя­ми жирных кислот, содержат преимущественно неполярные аминокислоты. Участки белка, на­ходящиеся в области полярных «головок», обо­гащены гидрофильными аминокислотными ос­татками.

Локализация белков в мембранах. Трансмембранные белки, например: 1 - гликофорин А; 2 - рецептор адреналина. Поверхностные белки: 3 - белки, связанные с интегральными белками, например, фермент сукцинатдегидрогеназа; 4 - белки, присоединенные к полярным «головкам» липидного слоя, например, протеинкинаэа С; 5 - бел­ки, -заякоренные» в мембране с помощью короткого гидрофобного концевого домена, например, цитохрои b 5 ;6 - «заякоренные» белки, ковалентно соединённые с пипидом мембраны (например, фермент щелочная фосфатаза).

Белки мембран различаются по своему поло­жению в мембране. Они могут глу­боко проникать в липидный бислой или даже пронизывать его - интегральные белки, либо разными способами прикрепляться к мембра­не - поверхностные белки.

Поверхностные белки

Поверхностные белки часто прикрепляются к мембране, взаимодействуя с интегральными

белками или поверхностными участками липидного слоя.

Белки, образующие комплексы с интеграль­ными белками мембраны

Ряд пищеварительных ферментов, участвую­щих в гидролизе крахмала и белков, прикреп­ляется к интегральным белкам мембран микро­ворсинок кишечника.

Примерами таких комплексов могут быть сахараза-изомальтаза и мальтаза-гликоамилаза.

Белки, связанные с полярными «головками» липидов мембран

Полярные или заряженные домены белковой молекулы могут взаимодействовать с полярны­ми «головками» липидов, образуя ионные и во­дородные связи. Кроме того, множество раство­римых в цитозоле белков при определённых условиях могут связываться с поверхностью мембраны на непродолжительное время. Иног­да связывание белка - необходимое условие проявления ферментативной активности. К та­ким белкам, например, относят протеинкиназу С, факторы свёртывания крови.

Закрепление с помощью мембранного «якоря»

«Якорем» может быть неполярный домен белка, построенный из аминокислот с гидро-

фобными радикалами. Примером такого белка может служить цитохром b 5 мембраны ЭР. Этот белок участвует в окислительно-восстанови­тельных реакциях, как переносчик электронов.

Роль мембранного «якоря» может выполнять также ковалентно связанный с белком остаток жирной кислоты (миристиновой - С 14 или пальмитиновой - С 16). Белки, связанные с жирными кислотами, локализованы в основном на внутренней поверхности плазматической мембраны. Миристиновая кислота присоединя­ется к N-концевому глицину с образованием амидной связи. Пальмитиновая кислота обра­зует тиоэфирную связь с цистеином или слож-ноэфирную с остатками серина и треонина.

Небольшая группа белков может взаимодей­ствовать с наружной поверхностью клетки с помощью ковалентно присоединённого к С-концу белка фосфатидилинозитолгликана. Этот «якорь» - часто единственное связующее зве­но между белком и мембраной, поэтому при действии фосфолипазы С этот белок отделяет­ся от мембраны.

Трансмембранные (интегральные) белки

Некоторые из трансмембранных белков про­низывают мембрану один раз (гликофорин), дру­гие имеют несколько участков (доменов), пос­ледовательно пересекающих бислой.

Трансмембранные домены, пронизывающие бислой, имеют конформацию α -спирали. Поляр­ные остатки аминокислот обращены внутрь глобулы, а неполярные контактируют с мембранны­ми липидами. Такие белки называют «вывернуты­ми» по сравнению с растворимыми в воде белка­ми, в которых большинство гидрофобных остатков аминокислот спрятано внутрь, а гидрофильные располагаются на поверхности.

Радикалы заряженных аминокислот в соста­ве этих доменов лишены заряда и протониро-ваны (-СООН) или депротонированы (-NH 2).

Гликозилированные белки

Поверхностные белки или домены интеграль­ных белков, расположенные на наружной по­верхности всех мембран, почти всегда гликози-лированы. Олигосахаридные Остатки могут быть присоединены через амидную группу аспараги-на или гидроксильные группы серина и треонина.

Олигосахаридные остатки защищают белок от протеолиза, участвуют в узнавании лигандов или адгезии.

Латеральная диффузия белков

Некоторые мембранные белки перемещают­ся вдоль бислоя (латеральная диффузия) или по­ворачиваются вокруг оси, перпендикулярно его поверхности.

Латеральная диффузия интегральных белков в мембране ограничена, это связано с их боль­шими размерами, взаимодействием с другими мембранными белками, элементами цитоскелета или внеклеточного матрикса.

Белки мембран не совершают перемещений с одной стороны мембраны на другую («флип-флоп» перескоки), подобно фосфолипидам.

Клетки. Связывание с сигнальной молекулой (гормоном или медиатором) происходит с одной стороны от мембраны, а клеточный ответ формируется на другой стороне от мембраны. Таким образом, они играют уникальную и важную роль в межклеточных связях и передаче сигнала.

Многие трансмембранные рецепторы состоят из двух или нескольких субъединиц, которые действуют в совокупности и могут диссоциировать при связывании с лигандом или менять свою конформацию и переходить на следующую стадию цикла активации. Зачастую они классифицируются на основе их молекулярной структуры. Полипептидные цепи простейших из этих рецепторов пересекают липидный бислой лишь один раз, между тем как многие - семь раз (например, связанные с G-белками рецепторы).

Строение

Внеклеточный домен

Внеклеточный домен - это участок рецептора, который находится вне клетки или органоида. Если полипептидная цепь рецептора пересекает клетку несколько раз, то внешний домен может состоять из нескольких петель. Основная функция рецептора состоит в том, чтобы опознавать гормон (хотя некоторые рецепторы также способны реагировать на изменение мембранного потенциала), и во многих случаях гормон связывается именно с этим доменом.

Трансмембранный домен

Некоторые рецепторы являются также и белковыми каналами. Трансмембранный домен в основном состоит из трансмембранных α-спиралей. В некоторых рецепторах, таких как никотиновый ацетилхолиновый рецептор, трансмембранный домен формирует мембранную пору или ионный канал. После активации внеклеточного домена (связывания с гормоном) канал может пропускать ионы . У других рецепторов после связывания гормона трансмембранный домен меняет свою конформацию, что оказывает внутриклеточное воздействие.

Внутриклеточный домен

Внутриклеточный, или цитоплазматический, домен взаимодействует с внутренней частью клетки или органоида, ретранслируя полученный сигнал. Существуют два принципиально разных пути такого взаимодействия:

  • Внутриклеточный домен связывается с эффекторными сигнальными белками, которые в свою очередь передают сигнал по сигнальной цепи к месту его назначения.
  • В случае если рецептор связан с ферментом или сам обладает ферментативной активностью, внутриклеточный домен активирует фермент (или осуществляет ферментативную реакцию).

Классификация

Большинство трансмембранных рецепторов относится к одному из трёх классов, выделяемых по основному механизму трансдукции сигнала. Классифицируют ионотропные и метаботропные трансмембранные рецепторы. Ионотропные рецепторы, или рецепторы, сопряжённые с ионными каналами, участвуют, например, в быстрой передаче синаптических сигналов между нейронами и другими клетками-мишенями, которые могут воспринимать электрические сигналы.

Метаботропные рецепторы передают химические сигналы. Они подразделяются на два больших класса: рецепторы, сопряжённые с G-белками , и рецепторы, сопряжённые с ферментами .

Рецепторы, сопряжённые с G-белками, также называются 7TM-рецепторами (seven-transmembrane domain receptors, рецепторы с семью трансмембранными доменами). Это трансмембранные белки с внешним сегментом для связывания лиганда, мембранным сегментом и цитозольным сегментом, связанным с G-белком. В них выделяют шесть классов на основании подобия структуры и функций рецепторов, классы A-F (или 1-6), которые, в свою очередь, подразделяются на множество семейств. К этому классу относятся рецепторы органов чувств и адренорецепторы .

Как и GPCR, рецепторы, сопряжённые с ферментами - это трансмембранные белки, у которых домен связывания с лигандом расположен снаружи мембраны. В отличие от GPCR, их цитозольный домен не сопряжён с G-белком, а сам обладает ферментативной активностью или связывает фермент напрямую. Обычно вместо семи сегментов, как у GPCR, такие рецепторы имеют только один трансмембранный сегмент. Эти рецепторы могут включать те же сигнальные пути, что и GPCR. К этому классу относится, например, инсулиновый рецептор.

Выделяют шесть основных классов рецепторов, сопряжённых с ферментами:

  • Рецепторные тирозиновые киназы - могут непосредственно фосфорилировать тирозиновые остатки, как собственные, так и для небольшого набора внутриклеточных сигнальных белков.
  • Рецепторы, сопряжённые с тирозинкиназами - сами по себе не является активными ферментами, но непосредственно связывают цитоплазматические тирозинкиназы для передачи сигнала.
  • Рецепторные серин-треониновые киназы - могут непосредственно фосфорилировать сериновые или треониновые остатки, как собственные, так и для белков регуляции генов, с которыми они связываются.
  • Рецепторы, связанные с гистидиновыми киназами - активируют двухстадийный сигнальный путь, в котором киназа фосфорилирует собственный гистидин и немедленно передаёт фосфат второму внутриклеточному сигнальному белку.
  • Рецепторные гуанилатциклазы - прямо катализируют производство молекул цГМФ в цитозоле, которые действуют как небольшой внутриклеточный посредник по механизмам, во многом схожим с цАМФ.
  • Рецептороподобные тирозинфосфатазы - удаляют фосфатные группы с тирозинов внутриклеточных сигнальных белков. Они называются рецептороподобными, потому что механизм их действия как рецепторов остается невыясненным.

Регуляция

В клетке существует несколько путей регуляции активности трансмембранных рецепторов, наиболее важными способами являются фосфорилирование и интернализация рецепторов.

См. также

Примечания


Wikimedia Foundation . 2010 .

Смотреть что такое "Трансмембранные рецепторы" в других словарях:

    Ацетилхолин Холинэргические рецепторы (ацетилхолиновые рецепторы) трансмембранные рецепторы, лигандом которых является ацетилхолин … Википедия

    Трансмембранные рецепторы мембранные белки, которые размещаются и работают не только во внешней клеточной мембране, но и в мембранах компартментов и органелл клетки. Связывание с сигнальной молекулой (гормоном или медиатором) происходит с одной… … Википедия - Нейропилин 1 Обозначения Символы NRP1 Entrez Gene … Википедия

    Димер комплекса сенсорного родопсина II и белка трансдьюсера. Сенсорный родопсин изображен голубым. Вид в плоскости мембраны. Сенсорный родопси … Википедия

    Действующее вещество ›› Хориогонадотропин альфа* (Choriogonadotropin alfa*) Латинское название Ovitrelle АТХ: ›› G03GA08 Хориогонадотропин альфа Фармакологическая группа: Гормоны гипоталамуса, гипофиза, гонадотропины и их антагонисты… … Словарь медицинских препаратов

    Протеинкиназа А протеинкиназа, активность которой зависит от уровня цАМФ в клетке. Протеинкиназа А осуществляет активацию и инактивацию ферментов и других белков за счёт фосфорилирования (то есть присоединения фосфатной группы). Содержание… … Википедия

    Протеинкиназа А протеинкиназа, активность которой зависит от уровня цАМФ в клетке. Протеинкиназа А осуществляет активация и инактивация ферментов и других белков за счёт фосфорилирования (то есть присоединения фосфатной группы). Содержание 1… … Википедия

скачать

Реферат на тему:

Мембранные белки



План:

    Введение
  • 1 Классификация
    • 1.1 Топологическая классификация
    • 1.2 Биохимическая классификация

Введение

Альфа-спиральный трансмембранный фрагмент интегрального белка.

К мембранным белкам относятся белки, которые встроены в клеточную мембрану или мембрану клеточной органеллы или ассоциированы с таковой. Около 25 % всех белков являются мембранными.


1. Классификация

Мембранные белки могут быть классифицированы по топологическому или биохимическому принципу. Топологическая классификация основана на локализации белка по отношению к липидному бислою. Биохимическая классификация основана на прочности взаимодействия белка с мембраной.

Различные категории политопических белков. Связывание с мембраной за счёт (1) единичной трансмембранной альфа-спирали, (2) множественных трансмембранных альфа-спиралей, (3) бета-складчатой структуры.

Различные категории интегральных монотопических белков. Связывание с мембраной за счёт (1) амфипатической альфа-спирали, параллельной плоскости мембраны, (2) гидрофобной петли, (3) ковалентно соединённого жирнокислотного остатка, (4) электростатического взаимодействия (прямого или кальций-опосредованного).


1.1. Топологическая классификация

По отношению к мембране мембранные белки делятся на поли- и монотопические.

  • Политопические, или трансмембранные, белки полностью пронизывают мембрану и, таким образом, взаимодействуют с обеими сторонами липидного бислоя. Как правило, трансмембранный фрагмент белка является альфа-спиралью, состоящей из гидрофобных аминокислот (возможно от 1 до 20 таких фрагментов). Только у бактерий, а также в митохондриях и хлоропластах трансмембранные фрагменты могут быть организованы как бета-складчатая структура (от 8 до 22 поворотов полипептидной цепи).
  • Интегральные монотопические белки постоянно встроены в липидный бислой, но соединены с мембраной только на одной стороне, не проникая на противоположную сторону.

1.2. Биохимическая классификация

По биохимической классификации мембранные белки делятся на интегральные и периферические .

  • Интегральные мембранные белки прочно встроены в мембрану и могут быть извлечены из липидного окружения только с помощью детергентов или неполярных растворителей. По отношению к липидному бислою интегральные белки могут быть трансмембранными политопическими или интегральными монотопическими.
  • Периферические мембранные белки являются монотопическими белками. Они либо связаны слабыми связями с липидной мембраной, либо ассоциируют с интегральными белками за счёт гидрофобных, электростатических или других нековалентных сил. Таким образом, в отличие от интегральных белков они диссоциируют от мембраны при обработке соответствующим водным раствором (например, с низким или высоким pH, с высокой концентрацией соли или под действием хаотропного агента). Эта диссоциация не требует разрушения мембраны.

Мембранные белки могут быть встроены в мембрану за счёт жирнокислотных или пренильных остатков либо гликозилфосфатидилинозитола, присоединённых к белку в процессе их посттрансляционной модификации.

скачать
Данный реферат составлен на основе статьи из русской Википедии . Синхронизация выполнена 14.07.11 05:26:08
Похожие рефераты:
Понравилась статья? Поделиться с друзьями: